【题目】如图,在△ABC中,∠C=90°,∠A>∠B.
(1)用直尺和圆规作AB的垂直平分线,交AB与D,交BC于E;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若CE=DE,求∠A,∠B的度数.
【答案】(1)见解析;(2)∠B=30°,∠BAC=60°.
【解析】
试题分析:(1)利用基本作图(作线段的垂直平分线)作出DE;
(2)先利用角平分线性质定理的逆定理得到AE平分∠DAC,即∠CAE=∠BAE,再根据线段垂直平分线的性质定理得到EA=EB,则∠B=∠BAE,所以∠BAC=2∠B,再利用互余得到∠B+∠BAC=90°,于是得到∠B=30°,∠BAC=60°.
解:(1)如图,DE为所作;
(2)连结AE,如图,
∵EC⊥AC,ED⊥AD,CE=DE,
∴AE平分∠DAC,即∠CAE=∠BAE,
∵ED垂直平分AB,
∴EA=EB,
∴∠B=∠BAE,
∴∠BAC=2∠B,
∵∠B+∠BAC=90°,
∴∠B=30°,∠BAC=60°.
科目:初中数学 来源: 题型:
【题目】(本小题满分11分)已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点m在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C,D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8,
(1)求证:AE=CD;
(2)求点C坐标和⊙M直径AB的长;
(3)求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过以下一组点可以画出函数y=2x图象的是()
A. (0,0)和(2,1) B. (0,0)和(1,2)
C. (1,2)和(2,1) D. (-1,2)和(1,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列结论错误的是
A. 全等三角形对应边上的中线相等
B. 两个直角三角形中,两个锐角相等,则这两个三角形全等
C. 全等三角形对应边上的高相等
D. 两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线 BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.
(1)求证:AE为⊙O的切线.
(2)当BC=8,AC=12时,求⊙O的半径.
(3)在(2)的条件下,求线段BG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com