如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
![]()
![]()
【考点】二次函数综合题.
【专题】综合题;压轴题.
【分析】(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;
(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;
(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.
【解答】解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,
∴可得A(1,0),B(0,﹣3),
把A、B两点的坐标分别代入y=x2+bx+c得:![]()
,
解得:![]()
.
∴抛物线解析式为:y=x2+2x﹣3.
(2)令y=0得:0=x2+2x﹣3,
解得:x1=1,x2=﹣3,
则C点坐标为:(﹣3,0),AC=4,
故可得S△ABC=![]()
AC×OB=![]()
×4×3=6.
(3)存在,理由如下:
抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:
讨论:
①当MA=AB时,
∵OA=1,OB=3,
∴AB=![]()
,
![]()
,
解得:![]()
,
∴M1(﹣1,![]()
),M2(﹣1,﹣![]()
);
②当MB=BA时,![]()
,
解得:M3=0,M4=﹣6,
∴M3(﹣1,0),M4(﹣1,﹣6)(不合题意舍去),
③当MB=MA时,![]()
,
解得:m=﹣1,
∴M5(﹣1,﹣1),
答:共存在4个点M1(﹣1,![]()
),M2(﹣1,﹣![]()
),M3(﹣1,0),M4(﹣1,﹣1)使△ABM为等腰三角形.
【点评】本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.
科目:初中数学 来源: 题型:
在学校的艺术节上为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元。求钢笔和毛笔
的单价各为多少元?(8分)
查看答案和解析>>
科目:初中数学 来源: 题型:
将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为( )
![]()
![]()
A.2cm2 B.4cm2 C.6cm2 D.8cm2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com