【题目】如图①是一个小箱子ABCDE放在桌面MN上的示意图,BC这部分可弯曲,在弯曲时形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,小箱子盖面CD与桌面MN平行,此时CD距离桌面14cm,已知AB的长10cm,CD的长为25.2cm.
(1)如图①,求弧BC的长度(结果保留π).
(2)如图②,若小箱子ABCDE打开后弧BC所对的圆心角度数为60°,求小箱子顶端D到桌面MN的距离DH(结果保留一位小数).(参考数据:≈1.73)
【答案】(1)2π(cm);(2)顶端D到桌面MN的距离是27.8 cm
【解析】
(1)根据题意推出∠BOC=90°,半径OC为4cm,即可得出弧BC的长度;
(2)过点C作CP⊥DH于点P,作CG⊥OB于G,得矩形CGQP,则CP∥OB,由题可得DP=CD=×25.2=12.6cm,根据弧BC的长度为2πcm,可得OB=OC=6cm,由此可得CG=OCsin60°=6×=3≈5.2cm,即可求出DH.
解:(1)如图①,
∵线段AB,CD均与圆弧相切,
∴OB⊥AB,OC⊥CD,
∴CD∥OB∥AM,
∴∠BOC=∠OCD=90°,
∵CD距离桌面14cm,AB的长为10cm,
∴半径OC为4cm,
∴弧BC的长度为=2π(cm);
(2)如图②,过点C作CP⊥DH于点P,作CG⊥OB于G,得矩形CGQP,则CP∥OB,
∴∠OCP=∠BOC=60°,
∵∠OCD=90°,
∴∠PCD=30°,
∴DP=CD=×25.2=12.6(cm),
∵弧BC的长度为2πcm,
∴2π=,
∴OB=OC=6cm,
∴CG=OCsin60°=6×=3≈5.2(cm),
∴DH=DP+CG+AB=12.6+5.2+10=27.8(cm),
故顶端D到桌面MN的距离是27.8cm.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是( )
A.20°B.35°C.40°D.55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).
(1)求y与x的函数关系式.
(2)要使日销售利润为720元,销售单价应定为多少元?
(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象与一次函数的图象相交于点A(1,4)和点B(n,).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交直线AB于点D,连接CD.若∠ABC=40°,∠ACD=30°,则∠BAC的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).
(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x,y)落在坐标轴上的概率;
(2)直接写出点(x,y)落在以坐标原点为圆心,2为半径的圆内的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,AD=6,E为AB边上一点,将△BEC沿CE翻折,点B落在点F处,当△AEF为直角三角形时,BE=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点(点A在点B的左侧),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当点P在线段OB上运动时,求线段MN的最大值;
(3)是否存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形?若存在,请直接写出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com