【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.
(1)若∠AOB=60,OM=4,OQ=1,求证:CN⊥OB.
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问: 的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.
【答案】(1)CN⊥OB;(2)①②0<≤
【解析】试题分析:(1)过P作PE⊥OA于E,易证四边形OMPQ为平行四边形.根据三角函数求得PE的长,再根据三角函数求得∠PCE的度数,即可得∠CPM=90,又因PM∥OB,即可证明CN⊥OB.(2)①设OM=x,ON=y,先证△NQP∽△NOC,即可得,把x,y代入整理即可得-的值.②过P作PE⊥OA于E,过N作NF⊥OA于F,可得S1=OM·PE,S2=OC·NF,所以=.再证△CPM∽△CNO,所以==,用x表示出与x的关系,根据二次函数的性质即可得的取值范围.
试题解析:(1)
过P作PE⊥OA于E.∵PQ∥OA,PM∥OB,∴四边形OMPQ为平行四边形.
∴PM=OQ=1,∠PME=∠AOB=60,
∴PE=PM·sin60=,ME=,
∴CE=OC-OM-ME=,∴tan∠PCE==,
∴∠PCE=30,∴∠CPM=90,
又∵PM∥OB,∴∠CNO=∠CPM=90 ,即CN⊥OB.
(2)①-的值不发生变化. 理由如下:
设OM=x,ON=y.∵四边形OMPQ为菱形,∴ OQ=QP=OM=x,NQ=y-x.
∵PQ∥OA,∴∠NQP=∠O.又∵∠QNP=∠ONC,∴△NQP∽△NOC,∴=,即=,
∴6y-6x=xy.两边都除以6xy,得-=,即-=.
②过P作PE⊥OA于E,过N作NF⊥OA于F,
则S1=OM·PE,S2=OC·NF,
∴=.
∵PM∥OB,∴∠MCP=∠O.又∵∠PCM=∠NCO,
∴△CPM∽△CNO.∴==.
∴==-(x-3)2+.
∵0<x<6,由这个二次函数的图像可知,0<≤.
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题有( )①同旁内角互补;②长度为2、3、5的三条线段可以构成三角形;③平方根、立方根是它本身的数是0和1;④和﹣|﹣2|互为相反数;⑤4<<5;⑥在同一平面内,如果a∥b,a⊥c.那么b⊥c.
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.
作法:如图
①以点B为圆心,AC长为半径作弧;
②以点C为圆心,AB长为半径作弧;
③两弧交于点D,A,D在BC同侧;
④连接AD,CD.
所以四边形ABCD是矩形,
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:链接BD.
∵AB=________,AC=__________,BC=BC
∴ΔABC≌ΔDCB
∴∠ABC=∠DCB=90°
∴AB∥CD.
∴四边形ABCD是平行四边形
∵∠ABC=90°
∴四边形ABCD是矩形.(_______________)(填推理的依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两位运动员在相同条件下各射靶10次,毎次射靶的成绩情况如图.
(1)请填写下表:
(2)请你从平均数和方差相结合对甲、乙两名运动员6次射靶成绩进行分析:
平均数 | 方差 | 中位数 | 命中9环以上的次数(包括9环) | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 | 7.5 |
(3)教练根据两人的成绩最后选择乙去参加比赛,你能不能说出教练让乙去比赛的理由?(至少说出两条理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.
(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)
(1)求b,m的值
(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数的图象与性质.
小亮根据学习函数的经验,对函数的图象与性质进行了探究。
下面是小亮的探究过程,请补充完整:
(1)函数中自变量x的取值范围是_________.
(2)下表是y与x的几组对应值.
x | … | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | … | ||
y | … | - | - | -4 | -5 | -7 | m | -1 | -2 | - | - | … |
求m的值;
(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P从出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P第2018次碰到长方形的边时,点P的坐标为______.
【答案】
【解析】
根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.
解:如图所示:经过6次反弹后动点回到出发点,
,
当点P第2018次碰到矩形的边时为第337个循环组的第2次反弹,
点P的坐标为.
故答案为:.
【点睛】
此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.
【题型】填空题
【结束】
15
【题目】为了保护环境,某公交公司决定购买A、B两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2辆A型车比购买3辆B型车少60万元.
请求出a和b;
若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com