【题目】某商店经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+800.
(1)该商店每月的利润为W元,写出利润W与销售单价x的函数关系式;
(2)若要使每月的利润为20000元,销售单价应定为多少元?
(3)商店要求销售单价不低于280元,也不高于350元,求该商店每月的最高利润和最低利润分别为多少?
【答案】(1)w=﹣2x2+1200x﹣160000;(2)要使每月的利润为20000元,销售单价应定为300;(3)最高利润为20000元,最低利润为15000元.
【解析】分析:(1)、根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)、令w=20000代入解析式,求出满足条件的x的值即可;(3)、根据(1)得到销售利润的关系式,利用配方法可求最大值.
详解:解:(1)由题意得:w=(x﹣200)y=(x﹣200)(﹣2x+800)=﹣2x2+1200x﹣160000;
(2)令w=﹣2x2+1200x﹣160000=﹣2(x﹣300)2+20000=20000, 解得:x=300,
故要使每月的利润为20000元,销售单价应定为300;
(3)∵y=﹣2x2+1200x﹣160000=﹣2(x﹣300)2+20000,又∵
∴当x=300时,=20000;当x=350时,=15000;
故最高利润为20000元,最低利润为15000元.
科目:初中数学 来源: 题型:
【题目】某县对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
(1)样本容量为 ;
(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在 4.6 以上(含 4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点和⊙O,给出如下定义:过点A的直线l交⊙O于B,C两点,且A、B、C三点不重合,若在A、B、C三点中,存在位于中间的点恰为以另外两点为端点线段的中点时,则称点A为⊙O的价值点.
(1)如图1,当⊙O的半径为1时.
①分别判断在点D(,),E(﹣1,),F(2,3)中,是⊙O的价值点有 ;
②若点P是⊙O的价值点,点P的坐标为(x,0),且x>0,则x的最大值为 .
(2)如图2,直线y=﹣x+3与x轴,y轴分别交于M、N两点,⊙O半径为1,直线MN上是否存在⊙O的价值点?若存在,求出这些点的横坐标的取值范围,若不存在,请说明理由;
(3)如图3,直线y=﹣x+2与x轴、y轴分别交于G、H两点,⊙C的半径为1,且⊙C在x轴上滑动,若线段GH上存在⊙C的价值点P,求出圆心C的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)﹣3.25﹣(﹣19)+(﹣6.75)+179
(2)116﹣(﹣40+100)+2(15﹣27)
(3)(﹣9)÷()×()
(4)﹣14+16÷(﹣2)3×|﹣3﹣1|﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b分别交x轴、y轴于A(1,0)、B(0,﹣1),交双曲线y=于点C、D.
(1)求k、b的值;
(2)写出不等式kx+b>的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有分别标有汉字“美”、“丽”、“泰”、“兴”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“泰兴”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面内有任意一点和,按要求解答下列问题:
(1)当点和外部时,如图①,过点作,,垂足分别为、,量一量和的度数,用数学式子表达它们之间的数量关系 ;
(2)当点在内部时,如图②,以点为顶点作,使的两边分别和的两边垂直,垂足分别为、,用数学式子写出和的数量关系;
(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角 .
(4)在图②中,若,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠ACD=90°,MN是过A点的直线,AC=DC,DB⊥MN于点B,连接BC.
(1)如图1,将△BCD绕点C逆时针方向旋转90°得到△ECA.
①求证:点E在直线MN上;
②猜想线段AB、BD、CB满足怎样的数量关系,并证明你的猜想.
(2)当MN绕点A旋转到如图2的位置时,猜想线段AB、BD、CB又满足怎样的数列关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com