【题目】如图,点A(m,4),B(﹣4,n)在反比例函数y= (k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.
(1)若m=2,求n的值;
(2)求m+n的值;
(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.
【答案】
(1)解:当m=2,则A(2,4),
把A(2,4)代入y= 得k=2×4=8,
所以反比例函数解析式为y= ,
把B(﹣4,n)代入y= 得﹣4n=8,解得n=﹣2
(2)解:因为点A(m,4),B(﹣4,n)在反比例函数y= (k>0)的图象上,
所以4m=k,﹣4n=k,
所以4m+4n=0,即m+n=0
(3)解:作AE⊥y轴于E,BF⊥x轴于F,如图,
在Rt△AOE中,tan∠AOE= = ,
在Rt△BOF中,tan∠BOF= = ,
而tan∠AOD+tan∠BOC=1,
所以 + =1,
而m+n=0,解得m=2,n=﹣2,
则A(2,4),B(﹣4,﹣2),
设直线AB的解析式为y=px+q,
把A(2,4),B(﹣4,﹣2)代入得 ,解得 ,
所以直线AB的解析式为y=x+2.
【解析】(1)先把A点坐标代入y= 求出k的值得到反比例函数解析式为y= ,然后把B(﹣4,n)代入y= 可求出n的值;(2)利用反比例函数图象上点的坐标特征得到4m=k,﹣4n=k,然后把两式相减消去k即可得到m+n的值;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,利用正切的定义得到tan∠AOE= = ,tan∠BOF= = ,则 + =1,加上m+n=0,于是可解得m=2,n=﹣2,从而得到A(2,4),B(﹣4,﹣2),然后利用待定系数法求直线AB的解析式.
科目:初中数学 来源: 题型:
【题目】某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)参加调查的学生共有人,在扇形图中,表示“其他球类”的扇形的圆心角为度;
(2)将条形图补充完整;
(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字
(1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;
(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.
(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;
(2)分别求该公司3月,4月的利润;
(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(0,1),点B在x轴正半轴上的一动点,以AB为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系的图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.
(1)求AO的长;
(2)求PQ的长;
(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com