11£®ÒÑÖª£ºÈçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=ax2+bx+2µÄͼÏó¾­¹ýµãA£¨-1£¬0£©¡¢B£¨4£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬µãDÊǵãC¹ØÓÚÔ­µãµÄ¶Ô³Æµã£¬Á¬½ÓBD£¬µãEÊÇxÖáÉϵÄÒ»¸ö¶¯µã£¬¹ýµãE×öxÖáµÄ´¹Ïßl½»Å×ÎïÏßÓÚµãP£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©µ±µãEÔÚÏß¶ÎOBÉÏÔ˶¯Ê±£¬Ö±Ïßl½»BDÓÚµãF£¬µ±ËıßÐÎCDFPÊÇÆ½ÐÐËıßÐÎʱ£¬ÇóEµã×ø±ê£»
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷BDMÊÇÒÔBDΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èç¹û´æÔÚ£¬ÇëÖ±½Óд³öµãMµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃCµã×ø±ê£¬¸ù¾Ý¶Ô³Æµã£¬¿ÉµÃDµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃBDµÄ½âÎöʽ£¬¸ù¾ÝƽÐÐÏߵĶԱßÏàµÈ£¬¿ÉµÃ¹ØÓÚmµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃmµÄÖµ£¬¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾Ý»¥Ïà´¹Ö±µÄÁ½Ö±ÏߵıÈÀýϵÊý»¥Îª¸ºµ¹Êý£¬¿ÉµÃBDµÄ´¹Ïߣ¬¸ù¾Ý½â·½³Ì×飬¿ÉµÃMµã×ø±ê£®

½â´ð ½â£º£¨1£©°ÑA£¨-1£¬0£©£¬B£¨4£¬0£©´úÈëy=ax2+bx+2£¬µÃ
$\left\{\begin{array}{l}{a-b+2=0}\\{16a+4b+2=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{3}{2}}\end{array}\right.$£¬
¶þ´Îº¯Êý½âÎöʽΪy=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2£»
£¨2£©Èçͼ1£º£¬
µ±x=0ʱ£¬y=2£¬Cµã×ø±êΪ£¨0£¬2£©£®
ÓɵãDÊǵãC¹ØÓÚÔ­µãµÄ¶Ô³Æµã£¬µÃDµã×ø±êΪ£¨0£¬-2£©£®
ÓÉB£¨4£¬0£©£¬D£¨0£¬-2£©¿ÉµÃÖ±ÏßBDµÄ½âÎöʽy=$\frac{1}{2}$x-2£»
ÉèEµã×ø±êΪ£¨m£¬0£©£¬µÃ
F£¨m£¬$\frac{1}{2}$m-2£©£¬P£¨m£¬-$\frac{1}{2}$m2+$\frac{3}{2}$m+2£©£®
µ±PF=CD=4ʱ£¬£¨-$\frac{1}{2}$m2+$\frac{3}{2}$m+2£©-£¨$\frac{1}{2}$m-2£©=4£¬
½âµÃm=2»òm=0£¨ÉáÈ¥£©£¬
¡àµãEµÄ×ø±êΪ£¨2£¬0£©£»
£¨3£©Èçͼ2£¬
£¬
ÓÉB£¨4£¬0£©£¬D£¨0£¬-2£©¿ÉµÃÖ±ÏßBDµÄ½âÎöʽy=$\frac{1}{2}$x-2£»µÃ
BMµÄ½âÎöʽΪy=-2x+8£¬
ÁªÁ¢BMÓëÅ×ÎïÏߣ¬µÃ
$\left\{\begin{array}{l}{y=-2x+8}\\{y=-\frac{1}{2}{x}^{2}+\frac{3}{2}x+2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$£¨²»·ûºÏÌâÒ⣬Éᣩ£¬¼´M£¨3£¬2£©£»
B£¨4£¬0£©£¬D£¨0£¬-2£©¿ÉµÃÖ±ÏßBDµÄ½âÎöʽy=$\frac{1}{2}$x-2£¬µÃ
DMµÄ½âÎöʽΪy=-2x-2£¬
ÁªÁ¢DMÓëÅ×ÎïÏߣ¬µÃ
$\left\{\begin{array}{l}{y=-2x-2}\\{y=-\frac{1}{2}{x}^{2}+\frac{3}{2}x+2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=8}\\{y=-18}\end{array}\right.$£¬¼´M£¨-1£¬0£©»ò£¨8£¬18£©£»
×ÛÉÏËùÊö£ºµãMµÄ×ø±êΪ£¨3£¬2£©¡¢£¨-1£¬0£©»ò£¨8£¬-18£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»ÀûÓÃÆ½ÐÐËıßÐεĶԱßÏàµÈµÃ³ö¹ØÓÚmµÄ·½³ÌÊǽâÌâ¹Ø¼ü£»ÀûÓû¥Ïà´¹Ö±µÄÁ½Ö±ÏߵıÈÀýϵÊý»¥Îª¸ºµ¹ÊýµÃ³öBDµÄ´¹ÏßÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚÔ²ÖУ¬30¡ãµÄÔ²ÖܽÇËù¶ÔµÄÏҵij¤¶ÈΪ$\sqrt{3}$£¬ÔòÕâ¸öÔ²µÄ°ë¾¶ÊÇ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚRt¡÷ABCÖУ¬µãDΪб±ßABµÄÖе㣬PΪAC±ßÒ»¶¯µã£¬¡÷BDPÑØ×ÅPDËùÔÚµÄÖ±Ïß¶ÔÕÛ£¬µãBµÄ¶ÔÓ¦µãΪE£®
£¨1£©ÈôBC=5£¬AC=12£¬PD¡ÍAB£¬ÇóAPµÄ³¤£»
£¨2£©µ±AD=PEʱ£¬ÇóÖ¤£ºËıßÐÎBDEPΪÁâÐΣ»
£¨3£©ÈôBC=5£¬¡ÏA=30¡ã£¬Pµã´ÓCµãÔ˶¯µ½Aµã£¬ÔÚÕâ¸ö¹ý³ÌÖУ¬ÇóEµãËù¾­¹ýµÄ·¾¶³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÎÊÌâÇé¾³£º
ÎÒÃÇÖªµÀÈôÒ»¸ö¾ØÐεÄÖܳ¤¹Ì¶¨£¬µ±ÏàÁÚÁ½±ßÏàµÈ£¬¼´ÎªÕý·½ÐÎʱ£¬Ãæ»ýÊÇ×î´óµÄ£¬·´¹ýÀ´£¬ÈôÒ»¸ö¾ØÐεÄÃæ»ý¹Ì¶¨£¬ËüµÄÖܳ¤ÊÇ·ñ»áÓÐ×îֵĨ£¿
̽¾¿·½·¨£º
ÓÃÁ½ÌõÖ±½Ç±ß·Ö±ðΪa¡¢bµÄËĸöÈ«µÈµÄÖ±½ÇÈý½ÇÐΣ¬¿ÉÒÔÆ´³ÉÒ»¸öÕý·½ÐΣ¬Èôa¡Ùb£¬¿ÉÒÔÆ´³ÉÈçͼ¢ÙµÄÕý·½ÐΣ¬´Ó¶øµÃµ½a2+b2£¾4¡Á$\frac{1}{2}$ab£¬¼´a2+b2£¾2ab£»Èôa=b£¬¿ÉÒÔÆ´³ÉÈçͼ¢ÚµÄÕý·½ÐΣ¬´Ó¶øµÃµ½a2+b2=4¡Á$\frac{1}{2}$ab£¬¼´a2+b2=2ab£®
ÓÚÊÇÎÒÃÇ¿ÉÒԵõ½½áÂÛ£ºa£¬bΪÕýÊý£¬×ÜÓÐa2+b2¡Ý2ab£¬ÇÒµ±a=bʱ£¬´úÊýʽa2+b2È¡µÃ×îСֵΪ2ab£®
ÁíÍ⣬ÎÒÃÇÒ²¿ÉÒÔͨ¹ý´úÊýʽÔËËãµÃµ½ÀàËÆÉÏÃæµÄ½áÂÛ£®
¡ß£¨a-b£©2=a2-2ab+b2¡Ý0£¬a2+b2¡Ý2ab£¬¡à¶ÔÓÚÈÎÒâʵÊýa£¬b£¬×ÜÓÐa2+b2¡Ý2ab£¬ÇÒµ±a=bʱ£¬´úÊýʽa2+b2È¡µÃ×îСֵΪ2ab£®
·ÂÕÕÉÏÃæµÄ·½·¨£¬¶ÔÓÚÕýÊýa£¬bÊԱȽÏa+bºÍ2$\sqrt{ab}$µÄ´óС¹ØÏµ£®
Àà±ÈÓ¦ÓÃ
ÀûÓÃÉÏÃæËùµÃµ½µÄ½áÂÛ£¬Íê³ÉÌî¿Õ£º
£¨1£©µ±x£¾0ʱ£¬x2+$\frac{1}{{x}^{2}}$¡Ý2x•$\frac{1}{x}$£¬´úÊýʽx2+$\frac{1}{{x}^{2}}$ÓÐ×îСֵΪ2£®
£¨2£©µ±x£¾0ʱ£¬x+$\frac{9}{x}$¡Ý2$\sqrt{x•\frac{9}{x}}$£¬´úÊýʽx+$\frac{9}{x}$ÓÐ×îСֵΪ6£®
£¨3£©µ±x£¾2ʱ£¬x+$\frac{5}{x-2}$¡Ý2$\sqrt{£¨x-2£©•\frac{5}{x-2}}$+2£¬´úÊýʽx+$\frac{5}{x-2}$ÓÐ×îСֵΪ2$\sqrt{5}$+2£®
ÎÊÌâ½â¾ö£º
ÈôÒ»¸ö¾ØÐεÄÃæ»ý¹Ì¶¨Îªn£¬ËüµÄÖܳ¤ÊÇ·ñ»áÓÐ×îֵĨ£¿ÈôÓУ¬Çó³öÖܳ¤µÄ×îÖµ¼°´Ëʱ¾ØÐεij¤ºÍ¿í£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£¬ÓÉ´ËÄãÄܵõ½ÔõÑùµÄ½áÂÛ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®£¨-2£©-1-$\sqrt{4}$+|-3|=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬µãP£¨2£¬0£©Æ½Òƺó¶ÔÓ¦µÄµãΪQ£¨5£¬4£©£¬ÔòÆ½ÒÆµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®3¸öµ¥Î»³¤¶ÈB£®4¸öµ¥Î»³¤¶ÈC£®5¸öµ¥Î»³¤¶ÈD£®7¸öµ¥Î»³¤¶È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Å×ÎïÏßy=$\frac{1}{2}$x2+mx+nÓëÖ±Ïßy=-$\frac{1}{2}$x+3½»ÓÚA£¬BÁ½µã£¬½»xÖáÓÚD£¬CÁ½µã£¬Á¬½ÓAC£¬BC£¬ÒÑÖªA£¨0£¬3£©£¬B£¨4£¬1£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Çótan¡ÏBACµÄÖµ£»
£¨3£©PΪyÖáÓÒ²àÅ×ÎïÏßÉÏÒ»¶¯µã£¬Á¬½ÓPA£¬¹ýµãP×÷PQ¡ÍPA½»yÖáÓÚµãQ£¬ÎÊ£ºÊÇ·ñ´æÔÚµãPʹµÃÒÔA£¬P£¬QΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ACBÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èç¹ûÁ½¸ö¶þ´Îº¯ÊýͼÏóµÄ¿ª¿ÚÏòÉÏ£¬¶¥µã×ø±ê¶¼Ïàͬ£¬ÄÇô³ÆÕâÁ½¸ö¶þ´Îº¯Êý»¥Îª¡°Í¬´Ø¶þ´Îº¯Êý¡±£¬ÏÔÈ»¡°Í¬´Ø¶þ´Îº¯Êý¡±²»ÊÇΨһµÄ£®
£¨1£©ÒÑÖª¶þ´Îº¯Êýy=3x2-6x+1£®
¢Ùд³öËüµÄ¿ª¿Ú·½Ïò£¬¶¥µã×ø±ê£»
¢ÚÇëд³öËüµÄÁ½¸ö²»Í¬µÄ¡°Í¬´Ø¶þ´Îº¯Êý¡±£®
£¨2£©ÒÑÖªÁ½¸ö¶þ´Îº¯Êýy1=a1£¨x-k1£©2+h1£¬y2=a2£¨x-k2£©2+h2ÊÇ¡°Í¬´Ø¶þ´Îº¯Êý¡±£¬Ôòa1a2£¾0£¬k1=k2£¬h1=h2£¨¾ùÌî¡°£¾¡±¡¢¡°=¡°¡¢»ò¡°£¼¡±ºÅ£©
¢ÙÈç¹ûy3=y1+y2Ò²ÊÇy1µÄ¡°Í¬´Ø¶þ´Îº¯Êý¡±£¬ÇóÖ¤£ºy3µÄ¶¥µãÔÚxÖáÉÏ£»
¢ÚÈç¹ûÖ±Ïßy=t£¬Óëy1¡¢y2˳´Î½»ÓÚµãA¡¢B¡¢C¡¢D£¬ÇÒAB=BC=CD£¬Çó$\frac{{a}_{2}}{{a}_{1}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÂÖ´¬Ë³Á÷º½ÐÐʱmǧÃ×/Сʱ£¬ÄæÁ÷º½ÐÐʱ£¨m-6£©Ç§Ã×/Сʱ£¬ÔòË®Á÷ËÙ¶ÈÊÇ3ǧÃ×/ʱ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸