| A. | $\frac{4π}{3}$-2 | B. | $\frac{4π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{2π}{3}$-2 |
分析 根据等腰直角三角形的性质求出AB,再根据旋转的性质可得A′B=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′-S△ABC-S扇形CBC′=S扇形ABA′-S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.
解答 解:∵∠ACB=90°,AC=BC,
∴△ABC是等腰直角三角形,
∴AB=2OA=2OB=$\sqrt{2}$AC=2$\sqrt{2}$,
∵△ABC绕点B顺时针旋转点A在A′处,
∴BA′=AB,
∴BA′=2OB,
∴∠OA′B=30°,
∴∠A′BA=60°,
即旋转角为60°,
S阴影=S扇形ABA′+S△A′BC′-S△ABC-S扇形CBC′,
=S扇形ABA′-S扇形CBC′,
=$\frac{60π×(2\sqrt{2})^{2}}{360}$-$\frac{60π×{2}^{2}}{360}$,
=$\frac{4}{3}$π-$\frac{2}{3}$π,
=$\frac{2}{3}$π.
故选C.
点评 本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 50° | B. | 53° | C. | 55° | D. | 58° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com