精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC内接于⊙OAB是⊙O的直径,CE平分∠ACB交⊙OE,交AB于点D,连接AE,∠E30°AC5

1)求CE的长;

2)求SADCSACE的比值.

【答案】(1);(2)3

【解析】

1)先根据圆周角定理得出∠ACB=90°,由∠ABC=30°可得出AB的长,再由CE平分∠ACB得出∠BCE=BAE=45°,故可得出△ABE是等腰直角三角形,由勾股定理可得出AE的长;过点AAFCE于点FACF为等腰直角三角形,由勾股定理得,AF和CF的长,再由勾股定理逆定理得EF的长,最后计算CE=CF+EF的长即可;(2)过点CCMAB于点M,连接OE,利用等底三角形的面积比等于高之比,得出=,再通过比值计算即可得的比值.

解:

1)∵AB是⊙O的直径,

∴∠ACB=∠AEB90°

又∠E30°

∴∠ABC30°

AC5

AB10BC

CE平分∠ACB

∴∠ACE=∠BCE45°AEBE.

如图,过点AAFCE于点F

则△ACF为等腰直角三角形,

2CF225

AFCF

EF

CECF+EF

CE的长为.

2)过CCMAB于点M,连接OE

AEBEOAB中点,

OEAB

SADCSADECMOECM5

ACBCABCM

CM

SADCSADE

SADCSACE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】多多班长统计去年18书香校园活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )

A.极差是47B.众数是42

C.中位数是58D.每月阅读数量超过40的有4个月

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在2×2的正方形网格中,小正方形的边长均为1,△ABC与△ADE的顶点都在格点上.

(1)求证:△ABC∽△ADE

(2)求∠MDA+NDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数图象如图所示,下列结论:①;②;③当时,;④;⑤若,且,则.其中正确的有______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,二次函数ykx12+2的图象与一次函数ykxk+2的图象交于AB两点,点B在点A的右侧,直线AB分别与xy轴交于CD两点,其中k0

1)求AB两点的横坐标;

2)若△OAB是以OA为腰的等腰三角形,求k的值;

3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC2BEC,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.

当t为何值时,四边形ABQP是矩形;

当t为何值时,四边形AQCP是菱形;

分别求出(2)中菱形AQCP的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2x轴于A1;将C2绕点A1旋转180°得到C3x轴于点A2.....如此进行下去,直至得到C2018若点P(4035,m)在第2018段抛物线上,则m的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区为了改善居住环境,准备修建一个巨型花园ABCD,为了节约材料并种植不同花卉,决定花园一边靠墙,三边用栅栏围住,中间用一段垂直于墙的栅栏隔成两块.已知所用栅栏的总长为60米,墙长为30米,设花园垂直于墙的一边的长为米.

1)若平行于墙的一边长为米,直接写出的函数关系式及自变量的取值范围;

2)当为何值时,这个矩形花园的面积最大?最大值为多少?(栅栏占地面积忽略不计)

3)当这个花园的面积不小于288平方米时,试结合函数图象,直接写出的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足即将到来的春节市场需求,某超市购进一种品牌的食品,每盒进价为30元,根据往年的销售经验发现:当售价定为每盒50元时,每天可卖出100盒,每降价1元,每天可多卖出10盒,超市规定售价不低于40/盒,不高于50/.

(1)求每天的销售利润W()与每盒降价x()之间的函数关系式(注明自变量的取值范围)

(2)当每盒售价为多少元时,每天的销售利润最大?

(3)若要使每天的销售利润不低于2090元,那么每盒的售价应定在什么范围?

查看答案和解析>>

同步练习册答案