精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为      .                                                                          


 624 .                                                                       

【考点】解直角三角形.                                                                         

【专题】压轴题;分类讨论.                                                                  

【分析】根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.                    

【解答】解:如图1:                                                                        

                                                            

当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;                                            

如图2:                                                                                             

                                                          

当∠C=60°时,∠ABC=30°,                                                                   

∵∠ABP=30°,                                                                                  

∴∠CBP=60°,                                                                                  

∴△PBC是等边三角形,                                                                         

∴CP=BC=6;                                                                                    

如图3:                                                                                             

                                                                            

当∠ABC=60°时,∠C=30°,                                                                   

∵∠ABP=30°,                                                                                  

∴∠PBC=60°﹣30°=30°,                                                                        

∴PC=PB,                                                                                        

∵BC=6,                                                                                           

∴AB=3,                                                                                           

∴PC=PB===2;                                                              

如图4:                                                                                             

                                                                           

当∠ABC=60°时,∠C=30°,                                                                   

∵∠ABP=30°,                                                                                  

∴∠PBC=60°+30°=90°,                                                                         

∴PC=BC÷cos30°=4.                                                                         

故答案为:6或2或4.                                                                  

【点评】本题考查了解直角三角形,熟悉特殊角的三角函数值是解题的关键.             

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在Rt△ABC中,斜边AB=3,则AB2+AC2+BC2=(     )

A.9       B.18     C.10     D.24

查看答案和解析>>

科目:初中数学 来源: 题型:


已知∠MON,用三角尺按下列方法画图:

在∠MON的两边OM,ON上,分别取OA=OB,再分别过点A,B作ON,OM的垂线AD,BE,交ON,OM于点D,E,两条垂线相交于点C,作射线OC,则射线OC平分∠MON.

问:

(1)△AOD与△BOE全等吗?(不需证明)

(2)请利用(1)的结论证明射线OC平分∠MON.

查看答案和解析>>

科目:初中数学 来源: 题型:


若三角形的两边长分别为7和9,则第三边的长不可能是(     )

A.5       B.4       C.3       D.2

查看答案和解析>>

科目:初中数学 来源: 题型:


已知,如图CD是⊙O的切线,C是切点,直径AB的延长线与CD相交于D,连接OC、BC.                  

(1)写出三个不同类型的结论;                                                            

(2)若BD=OB,求证:CA=CD.                                                          

                                                                   

查看答案和解析>>

科目:初中数学 来源: 题型:


若实数a,b满足a+b2=1,则a2+b2的最小值是      .                       

查看答案和解析>>

科目:初中数学 来源: 题型:


下列计算中,正确的是(  )                                                              

A.        B.           C.           D.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知:点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣图象上的三点,且x1<0<x2<x3则y1、y2、y3的大小关系是(  )                                                                                        

A.y1<y2<y3              B.y2<y3<y1              C.y3<y2<y1              D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:﹣(2

查看答案和解析>>

同步练习册答案