精英家教网 > 初中数学 > 题目详情

【题目】一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:

1)桥拱半径.

2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?

【答案】110m;(22m

【解析】

1)由垂径定理可求得AD的长度,OD=OC-CDAO=CO,在Rt△ADO中,利用勾股定理求得桥拱半径AO;(2)求水面涨高了多少实际是求DM的长度,建立直角三角形,连接EOEF=12,由垂径定理求得EM长,利用勾股定理把MO求出来,因为COCD已知,所以OD可求,OM-OD即为所求DM长.

1拱桥的跨度AB=16m∴AD=8m

因为拱高CD=4m,利用勾股定理可得:AO2-OC-CD2=82

解得OA=10m).

所以桥拱半径为10m

2)设河水上涨到EF位置(如图所示),

这时EF=12mEF∥AB,有OC⊥EF(垂足为M),

∴EM=EF=6m

连接OE,则有OE=10m

OM2=OE2-EM2=102-62=64

所以OM=8mOD=OC-CD=10-4=6m),OM-OD=8-6=2m).

即水面涨高了2m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=4,BC=8,B=60,过平行四边形的对称中心点O的一条直线与边ADBC分别交于点EF,设直线EFBC的夹角为α

1)当α的度数是_________时,四边形AFCE为菱形;

2)当α的度数是_________时,四边形AFCE为矩形;

3)四边形AFCE能否为正方形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC∠A=60°BM⊥AC于点MCN⊥AB于点NPBC边的中点,连接PMPN,则下列结论:①PM=PN③△PMN为等边三角形;∠ABC=45°时,BN=PC.其中正确的个数是()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海面上B,C两岛分别位于A岛的正东和正北方向.一艘船从A岛出发,以18海里/时的速度向正北方向航行2小时到达C岛,此时测得B岛在C岛的南偏东43°.求A,B两岛之间的距离.(结果精确到0.1海里)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca≠0)的图象如图所示,根据图象解答下列问题:

1)写出方程ax2+bx+c=0的两个根;

2)写出yx的增大而减小的自变量x的取值范围;

3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应潜江市创建全国文明城市号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).

1)求yx之间的函数关系式,并写出自变量x的取值范围;

2)若矩形空地的面积为160m2,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区经考察,公司两种型号的健身器可供选择.

(1)松公司2015年每套健身器的售价为万元,经过连续两年降价,2017年每售价 万元求每型健身器年平均下降

(2)2017年市政府经过招标,决定年内采购安装松公司两种型号的健身器材,采购专项费总计不超过万元,采购合同规定:每套健身器售价为万元,每套健身器售价 万元.

型健身器最多可购买多少套?

安装完成后,若每套型和健身器一年的养护费分别是购买价的 .政府计划支出 万元进行养护.问该计划支出能否满足一年的养护需要?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

同步练习册答案