【题目】已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0).
(1)求抛物线F的解析式;
(2)如图1,直线l:yx+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);
(3)在(2)中,若m,设点A′是点A关于原点O的对称点,如图2.
①判断△AA′B的形状,并说明理由;
②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)y=x2x;(2)y2﹣y1=(m>0);(3)①等边三角形;②点P的坐标为(2)、()和(,﹣2).
【解析】
(1) 根据点的坐标,利用待定系数法即可求出抛物线的解析式;
(2) 将直线l的解析式代入抛物线F的解析式中, 可求出x1、x2的值, 利用一次函数图象上点的坐标特征可求出y1、y2的值, 做差后即可得出y2-y1的值;
(3) 根据m的值可得出点A、B的坐标, 利用对称性求出点A′的坐标 .
①分别求出AB、AA′、A′B的值, 由三者相等即可得出△AA′B为等边三角形;
②根据等边三角形的性质结合菱形的性质, 可得出存在符合题意得点P,设点P的坐标为(x,y),分A′B为对角线或AB为对角线或AA′为对角线三种情况分别讨论即可得.
(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(,0),
∴,解得:,
∴抛物线F的解析式为y=x2x;
(2)将yx+m代入y=x2x,得:x2=m,
解得:x1,x2,
∴y1m,y2m,
∴y2﹣y1=(m)﹣(m)(m>0);
(3)∵m,∴点A的坐标为(),点B的坐标为(,2),
∵点A′是点A关于原点O的对称点,∴点A′的坐标为();
①△AA′B为等边三角形,理由如下:
∵A(),B(,2),A′(),
∴AA′= ,
AB= ,
A′B= ,
∴AA′=AB=A′B,
∴△AA′B为等边三角形;
②∵△AA′B为等边三角形,
∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,
设点P的坐标为(x,y).
(i)当A′B为对角线时,有,解得:,
∴点P的坐标为(2);
(ii)当AB为对角线时,有,解得:,
∴点P的坐标为();
(iii)当AA′为对角线时,有,解得:,
∴点P的坐标为(,﹣2).
综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2)、()和(,﹣2).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+3与抛物线交于A、B两点,点A在x轴上,点B的横坐标为.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.
(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.
(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:
成绩/分 | 7 | 8 | 9 | 10 |
人数/人 | 2 | 5 | 4 | 4 |
(1)这组数据的众数是多少,中位数是多少.
(2)已知获得2018年四川省南充市的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请你画出一个以BC为底边的等腰ΔABC,使底边上的高AD=BC.
(1)求tanB和 sinB的值;
(2)在你所画的等腰ΔABC中设底边BC=5米,求腰上的高BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;
⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线PQ,使得PQ⊥l.
做法:如图,
①在直线l的异侧取一点K,以点P为圆心,PK长为半径画弧,交直线l于点A,B;
②分别以点A,B为圆心,大于AB的同样长为半径画弧,两弧交于点Q(与P点不重合);
③作直线PQ,则直线PQ就是所求作的直线.
根据小西设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵PA= ,QA= ,
∴PQ⊥l( )(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.
根据以上信息,解答下列问题.
(1)冰冰同学所列方程中的x表示什么,庆庆同学所列方程中的y表示什么;
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com