分析 首先根据菱形的性质得出AB=BC,∠BAC=∠BCA,由等角的补角相等得到∠BAE=∠BCF,又因为BA=BC,AE=CF,于是根据SAS即可证明△BAE≌△BCF.
解答 证明:∵菱形ABCD的对角线AC,BD相交于点O,
∴AB=BC,∠BAC=∠BCA,
∴∠BAE=∠BCF,
在△BAE与△BCF中,
$\left\{\begin{array}{l}{BA=BC}\\{∠BAE=∠BCF}\\{AE=CF}\end{array}\right.$,
∴△BAE≌△BCF(SAS).
点评 本题考查了菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.证明出∠BAE=∠BCF是解题的关键.也考查了全等三角形的判定.
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | -3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2+$\sqrt{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com