精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是O的直径,C是O上一点,D在AB的延长线上,且BCD=A.

(1)求证:CD是O的切线;

(2)若O的半径为3,CD=4,求BD的长.

【答案】(1)证明见解析(2)2

【解析】

试题分析:(1)连接OC,由AB是O的直径可得出ACB=90°,即ACO+OCB=90°,由等腰三角形的性质结合BCD=A,即可得出OCD=90°,即CD是O的切线;

(2)在RtOCD中,由勾股定理可求出OD的值,进而可得出BD的长.

试题解析:(1)如图,连接OC.

AB是O的直径,C是O上一点,

∴∠ACB=90°,即ACO+OCB=90°

OA=OC,BCD=A,

∴∠ACO=A=BCD,

∴∠BCD+OCB=90°,即OCD=90°

CD是O的切线.

(2)在RtOCD中,OCD=90°,OC=3,CD=4,

OD==5,

BD=ODOB=53=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.

(1)求证:△AEF≌△BEC;

(2)判断四边形BCFD是何特殊四边形,并说出理由;

(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上.向内放入两个半径为5 cm的钢球,测得上面一个钢球的最高点到底面的距离DC16 cm(钢管的轴截面如图所示),则钢管的内径AD的长为_______cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(-1,0),B(1,0),Cy轴正半轴上一点,点D为第三象限一动点,CDABF,且∠ADB=2BAC

(1)求证:∠ADB与∠ACB互补;

(2)求证:CD平分∠ADB

(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在长方形ABCD中,将ABE沿着AE折叠至AEF的位置,点F在对角线AC上,若BE=3EC=5,则线段CD的长是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,EBC边的中点,连接AE,以AD为直径的⊙OAE于点F,连接CF.求证:CF⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角ABC中,∠A=60°,∠ACB=45°,以BC为弦作O,交AC于点D,OD与BC交于点E,若AB与O相切,则下列结论:

BOD=90°②DOAB③CD=ADBDE∽△BCD

正确的有(  )

A. ①② B. ①④⑤ C. ①②④⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ACB=90°AC=8cosA=DAB边的中点,EAC边上一点,联结DE,过点DDFDEBC边于点F,联结EF

1)如图1,当DEAC时,求EF的长;

2)如图2,当点EAC边上移动时,∠DFE的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出∠DFE的正切值;

3)如图3,联结CDEF于点Q,当CQF是等腰三角形时,请直接写出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线 y=x2x与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.

(1)判断ABC形状,并说明理由.

(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当PBC的面积最大时,求PM+MC的最小值;

(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EHCK,交对称轴于点H,延长HE至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案