精英家教网 > 初中数学 > 题目详情
6.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:
①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=$\frac{1}{2}$∠BAC.
其中正确的结论有4个.

分析 根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.

解答 解:∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正确;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正确;
在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
∴∠ADC=90°-∠ABD,∴③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°-$\frac{1}{2}$∠ABC,
∴∠ADB不等于∠CDB,∴④错误;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤正确;
即正确的有4个,
故答案为:4.

点评 题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,当点C1在线段CA的延长线上时,则∠CC1A1=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程组
(1)$\left\{\begin{array}{l}{x-3y=5①}\\{2x+y=5②}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+2y=8}\\{2x-2y=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.请指出下列命题的题设和结论,并判断它们的真假,若是假命题,请举出一个反例.
(1)等角的补角相等;
(2)绝对值相等的两个数相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,矩形ABCD的对角线相交于点O,
(1)若AB=2,∠AOD=120°,求对角线AC的长;
(2)若AC=2AB.求证:△AOB是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.探索:在图1至图3中,已知△ABC的面积为a,

(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=a(用含a的代数式表示)
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=2a(用含a的代数式表示)
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3=6a(用含a的代数式表示).
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的7倍.
应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种黄花,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:
(1)种紫花的区域的面积;
(2)种蓝花的区域的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知$\sqrt{1-3a}$和|8b-3|互为相反数,求$27-\root{3}{{\frac{1}{ab}}}$的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.画出△ABC绕点B顺时针90°后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)(-$\frac{1}{3}$)-3+$\sqrt{\frac{1}{4}}$-($\frac{1}{2}$)0
(2)(x-2)2-(x+2)(x-2)

查看答案和解析>>

同步练习册答案