【题目】在矩形ABCD中,E为CD的中点,H为BE上的一点, ,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.
(1)求证: ;
(2)若∠CGF=90°,求 的值.
【答案】
(1)证明:∵四边形ABCD是矩形,
∴CD∥AB,AD=BC,AB=CD,AD∥BC,
∴△CEH∽△GBH,
∴
(2)解:作EM⊥AB于M,如图所示:
则EM=BC=AD,AM=DE,
∵E为CD的中点,
∴DE=CE,
设DE=CE=3a,则AB=CD=6a,
由(1)得: =3,
∴BG= CE=a,
∴AG=5a,
∵∠EDF=90°=∠CGF,∠DEF=∠GEC,
∴△DEF∽△GEC,
∴ ,
∴EGEF=DEEC,
∵CD∥AB,
∴ = ,
∴ ,
∴EF= EG,
∴EG EG=3a3a,
解得:EG= a,
在Rt△EMG中,GM=2a,
∴EM= = a,
∴BC= a,
∴ = =3 .
【解析】(1)根据相似三角形判定的方法,判断出△CEH∽△GBH,即可推得 .(2)作EM⊥AB于M,则EM=BC=AD,AM=DE,设DE=CE=3a,则AB=CD=6a,由(1)得: =3,得出BG= CE=a,AG=5a,证明△DEF∽△GEC,由相似三角形的性质得出EGEF=DEEC,由平行线证出 ,得出EF= EG,求出EG= a,在Rt△EMG中,GM=2a,由勾股定理求出BC=EM= a,即可得出结果.此题主要考查了相似三角形的判定与性质、矩形的性质勾股定理等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:
①∠1=∠2=22.5°;
②点C到EF的距离是 -1;
③△ECF的周长为2;
④BE+DF>EF.
其中正确的结论是 . (写出所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
例:已知: ,
求: 和 的值.
解: ,
,
,
,,
,,
解决问题:
(1)若 ,求 x、y 的值;
(2)已知 ,, 是 的三边长且满足 ,
①直接写出a=__________.b=___________.
②若 是 中最短边的边长(即c<a;c<b),且 为整数,直接写出 的值可能是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某开发区有一块四边形的空地,如图所示,现计划在空地上种植草皮,经测量,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径
(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线: 与x轴、y轴分别交于A、B两点,直线与x轴、y轴分别交于C、两点,且︰︰.
(1)求直线的解析式,并判断的形状;
(2)如图,为直线上一点,横坐标为,为直线上一动点,当最小时,将线段沿射线方向平移,平移后、的对应点分别为、,当最小时,求点的坐标;
(3)如图,将沿着轴翻折,得到,再将绕着点顺时针旋转()得到,直线与直线、轴分别交于点、.当为等腰三角形时,请直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以O为坐标原点在正方形网格中建立直角坐标系,若每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)试在y轴上找一点P,使PC+PB的值最小,请在图中标出P点的位置(留下作图痕迹),并求出PC+PB的最小值;
(2)将△ABC先向下平移3个单位,再向右平移4个单位后得到△A1B1C1,请在图中画出△A1B1C1,并写出点A1的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com