精英家教网 > 初中数学 > 题目详情
已知:如图,正比例函数y=ax的图象与反比例函数y=
kx
的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)点M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
分析:(1)将A坐标分别代入正比例与反比例解析式中求出a与k的值,即可确定出两函数解析式;
(2)在图象上找出反比例在正比例上方时x的范围即可;
(3)BM=DM,理由为:由反比例函数k的几何意义得到三角形OBM与三角形OAC面积为k的绝对值的一半,求出面积,矩形OBDC的面积=三角形OBM面积+四边形OADM面积+三角形OAC面积,求出矩形OBDC的面积,即为OB与OC的积,由OC的长求出OB的长,即为n的值,将n的值代入反比例解析式中求出m的值,即为BM的长,由BD-BM求出MD的长,即可作出判断.
解答:解:(1)将A(3,2)分别代入y=
k
x
,y=ax得:k=6,a=
2
3

则反比例解析式为y=
6
x
,正比例解析式为y=
2
3
x;
(2)由图象得:在第一象限内,当0<x<3时,反比例函数的值大于一次函数的值;
(3)BM=DM,理由为:
∵S△OMB=S△OAC=
1
2
×|k|=3,
∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC•OB=12,
∵OC=3,∴OB=4,即n=4,
∴m=
6
n
=
3
2

∴MB=
3
2
,MD=3-
3
2
=
3
2

则MB=MD.
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,一次函数与坐标轴的交点,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=x与反比例函数y=
1x
的图象交于A、B两点.
(1)求出A、B两点的坐标;
(2)根据图象求使正比例函数值大于反比例函数值的x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正比例函数y1=x,反比例函数y2=
1
x
,由y1,y2构造一个新函数y=x+
1
x
其图象如图所示.(因其图精英家教网象似双钩,我们称之为“双钩函数”).给出下列几个命题:
①该函数的图象是中心对称图形;
②当x<0时,该函数在x=-1时取得最大值-2;
③y的值不可能为1;
④在每个象限内,函数值y随自变量x的增大而增大.
其中正确的命题是
 
.(请写出所有正确的命题的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=ax(a≠0)的图象与反比例函致y=
kx
(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正比例函数y1=x,反比例函数y2=
1
x
,由y1,y2构造一个新函数y=x+
1
x
,其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题:
①该函数的图象是中心对称图形;
②当x<0时,该函数在x=-1时取得最大值-2;
③y的值不可能为1;
④在每个象限内,函数值y随自变量x的增大而增大.
其中正确的命题是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象与二次函数相交于两点D、E,且P是线段DE的中点.
(1)求该二次函数的解析式,并求函数顶点M的坐标;
(2)已知点E(2,3),且二次函数的函数值大于正比例函数值时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)当k为何值时且0<k<2,求四边形PCMB的面积为
93
16

(参考公式:已知两点D(x1,y1),E(x2,y2),则线段DE的中点坐标为(
x1+x2
2
y1+y2
2
)

查看答案和解析>>

同步练习册答案