精英家教网 > 初中数学 > 题目详情

已知:如图,点D、E分别在线段AC、AB上,AD•AC=AE•AB.
(1)求证:△AEC∽△ADB;
(2)AB=4,DB=5,sinC=数学公式,求S△ABD

(1)证明:∵AD•AC=AE•AB,
=
又∵∠DAB=∠EAC,
∴△AEC∽△ADB;

(2)解:∵△AEC∽△ADB,
∴∠B=∠C,
过点A作BD的垂线,垂足为F,则AF=AB•sinB=4×=
∴S△ABD=×DB•AF=×5×=
分析:(1)根据AD•AC=AE•AB,可得到=,再根据∠DAB=∠EAC即可得出结论;
(2)由(1)可知△AEC∽△ADB,故∠B=∠C,再过点A作BD的垂线,垂足为F,由锐角三角函数的定义可求出AF的长,再由三角形的面积即可得出结论.
点评:本题考查的是相似三角形的判定与性质,根据题意判断出△AEC∽△ADB是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案