精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点M的坐标是(54),⊙My轴相切于点C,与x轴相交于AB两点.

1)则点ABC的坐标分别是A____),B____),C____);

2)设经过AB两点的抛物线解析式为,它的顶点为F,求证:直线FA与⊙M相切;

3)在抛物线的对称轴上,是否存在点P,且点Px轴的上方,使PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.

【答案】1A20),B80),C04);(2)证明见试题解析;(3P54),或(5),或(5).

【解析】

1)连接MC,则MC垂直于y轴,MA=MC=5MD=4,由勾股定理可计算ADDB

2)把A、或BC的坐标代入y=,确定二次函数表达式y=,连接MA,根据勾股定理计算AF,由勾股定理逆定理判断MAAF,从而说明FA是切线;

3)设Px4),当C为顶点时,在RtCMP1中用x表示CP1,根据列方程求解;当B为顶点时,在RtBDP2中用x表示CP2,根据列方程求解;当P是顶点时,易知PM重合.

解:(1)连接MC,则MC垂直于y轴,MA=MC=5MD=4,在RtAMD中,AD==3,同理在RtBMD中,BD=3

A20),B80),C04);

2)把A20y=,解得k=-

y=,∴F5-

连接MA,则MF=4+=AF==

MAAF

FA与⊙M相切;

3)设Px4),

C为顶点时,在RtCMP1中,

x=

Px轴上方,故x=,所以(4);

B为顶点时,在RtBDP2中,

x=,点Px轴上方

x=,所以(4);

P是顶点时,PM重合,P354).

综上当P4)、(4)或(54)时PBC是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,,动点PAB边上(不含端点AB),以PC为直径作圆.圆与BCCA分别相交于点MN,则线段MN长度的最小值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一个例题:

有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?

这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2

我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:

1)若AB1m,求此时窗户的透光面积?

2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某小学门口有一直线马路,交警在门口设有一条宽度为4米的斑马线,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E,D,C,B四点在平行于斑马线的同一直线上)(参考数据:tan15°=2-≈1.732,≈1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的ABE三个接触点,该球的大小就符合要求.图2是过球心OABE三点的截面示意图,求这种铁球的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象过点(1)、(24)、(﹣1)与x轴分别交于B(左)、C两点,与y轴交于点A

1)求二次函数的解析式;

2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘观光游船从港口A处以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号.一艘在港口正东方向B处的海警船接到求救信号,测得事故船在它的北偏东37°方向.

1)求海警船距离事故船C的距离BC

2)若海警船以40海里/小时的速度前往救援,求海警船到达事故船C处大约所需的时间.(温馨提示:sin 53°≈08cos 53°≈06

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了保证端午节龙舟赛在我市侨港海域顺利举办,某部门工作人员乘快艇到侨港海域考察水情,以每秒11米的速度沿平行于岸边的赛道AB由西向东行驶,在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程ykm)与小明离家时间xh)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.

1)求小明骑车的速度和在甲地游玩的时间;

2)小明从家出发多少小时后被妈妈追上?此时离家多远?

3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.

查看答案和解析>>

同步练习册答案