精英家教网 > 初中数学 > 题目详情

如图,正方形的边长为2,以为圆心、为半径作弧于点,设弧与边围成的阴影部分面积为;然后以为对角线作正方形,又以为圆心、为半径作弧于点,设弧与边围成的阴影部分面积为;…,按此规律继续作下去,设弧与边围成的阴影部分面积为.则:(1)=       ;(2)=      

 


(1) 4-π.(2) .

【解析】第一个阴影部分的面积都等于它所在正方形的面积-扇形的面积.依此公式计算.S1=4-=4-π.

根据勾股定理得:OB1=

则OB2=2,

∴B1B2=-2,

再根据勾股定理得:2OA22=(-2)2解得:OA22=6-

则阴影的面积=6--=6--

从而我们可以发现规律,并用Sn=表示.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


函数中自变量的取值范围是       

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,现有边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH.

(1)求证:∠APB=∠BPH;

(2)求证:AP+HC=PH;

(3)当AP=1时,求PH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是(   )

A.S1>S2+S3      B.△AOM∽△DMN      C.∠MBN=45°      D.MN=AM+CN

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是             (写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:


已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF

(1)如图1,当点D在线段BC上时.求证CF+CD=BC;

(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;

(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;

①请直接写出CF,BC,CD三条线段之间的关系;

②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC 求OC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:


 实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值

查看答案和解析>>

科目:初中数学 来源: 题型:


定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.

(1)如果[a]=-2,那么a的取值范围是 ___________.

(2)如果 ,满足条件的所有正整数x有____________.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线的顶点为D(﹣1,4),与轴交于点C(0,3),与轴交于A,B两点(点A在点B的左侧)。

(1)求抛物线的解析式;

(2)连接AC,CD,AD,试证明△ACD为直角三角形;

(3)若点E在抛物线上,EF⊥x轴于点F,以A、E、F为顶点的三角形与△ACD相似,试求出所有满足条件的点E的坐标。

查看答案和解析>>

同步练习册答案