【题目】已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.
(1)此抛物线的解析式;
(2)求点A、B、C的坐标.
【答案】(1)y=x2-2x;(2)(0,0),(2,0),(1,-1).
【解析】
试题(1)根据已知条件知,该抛物线的对称轴是x=1,然后利用抛物线对称轴方程列出关于m的方程,则易求m的值;
(2)根据(1)中的函数解析式知,分别求当x=0,y的值;当y=0时,x的值.
试题解析::(1)∵抛物线(m为常数,m≠-8))的对称轴为,而抛物线与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,
∴,解得m=-6.
∴所求抛物经的解析式为y=x2-2x.
(2)当y=0时,x2-2x=0,解得x1=0,x2=2.
又y=x2-2x=(x-1)2-1,
∴点A、B、C的坐标.分别为(0,0),(2,0),(1,-1).
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,則四辺形ABFD的周长为( )
A. 16cmB. 18cmC. 20cmD. 22cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题6分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件。若商场平均每天要盈利1600元,每件衬衫应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,O是对角线AC的中点,延长AB到G,使BG=AB,连接GO并延长,交BC于E,交AD于F,且AC=2AB,连接AE、CF.求证:四边形AECF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A' ,B' ,C' .
(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.
(1)求反比例函数的解析式;
(2)直接写出当y<4时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线 y=x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).
(1)求A、B、C的坐标;
(2)直接写出当y<0时x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com