精英家教网 > 初中数学 > 题目详情

【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克元,经试销发现,销售量(千克)与销售单价(元)符合一次函数关系,如图是的函数关系图象

的函数解析式(也称关系式);

设该水果销售店试销草莓获得的利润为元,求的最大值.

【答案】(1)的函数解析式为.(2)当时,最大,最大值元.

【解析】

(1)待定系数法求解可得;

(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.

的函数关系式为

根据题意,得:

解得:

的函数解析式为

由已知得:

∴当时,的增大而增大,

∴当时,最大,最大值为元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以下说法合理的是(  )

A. 小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是

B. 某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖

C. 某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是

D. 小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,BC两点的坐标分别为B03)和C0,﹣),点Ax轴正半轴上,且满足∠BAO30°

1)过点CCEAB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将OFG沿FG翻折使点O落在平面内的点O处,连接OC,求线段OF的长以及线段OC的最小值;

2)如图2,点D的坐标为D(﹣10),将BDC绕点B顺时针旋转,使得BCAB于点B,将旋转后的BDC沿直线AB平移,平移中的BDC记为BDC,设直线BCx轴交于点MN为平面内任意一点,当以BDMN为顶点的四边形是菱形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

1)求出yx的函数关系式

2问销售该商品第几天时,当天销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一次函数y=﹣x+10的图象交x轴于点A,交y轴于点B.以P(1,0)为圆心的⊙Py轴相切,若点P以每秒2个单位的速度沿x轴向右平移,同时⊙P的半径以每秒增加1个单位的速度不断变大,设运动时间为t(s)

(1)点A的坐标为   ,点B的坐标为   OAB=   °;

(2)在运动过程中,点P的坐标为   P的半径为   (用含t的代数式表示);

(3)当⊙P与直线AB相交于点E、F

①如图2,求t=时,弦EF的长;

②在运动过程中,是否存在以点P为直角顶点的RtPEF,若存在,请求出t的值;若不存在,请说明理由(利用图1解题).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC的中点为O,点GH在对角线AC上,AGCH,直线GH绕点O逆时针旋转α角,与边ABCD分别相交于点EF(点E不与点AB重合).

1)求证:四边形EHFG是平行四边形;

2)若∠α90°AB9AD3,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的切线,切点为的直径,连接.过点作于点,交,连接

(1)求证:的切线;

(2)求证:的内心;

(3),求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数和反比例函数

1)如图1,若,且函数的图象都经过点

①求的值;

②直接写出当的范围;

2)如图2,过点轴的平行线与函数的图象相交于点,与反比例函数的图象相交于点

①若,直线与函数的图象相交点.当点中的一点到另外两点的距离相等时,求的值;

②过点轴的平行线与函数的图象相交于点.当的值取不大于1的任意实数时,点间的距离与点间的距离之和始终是一个定值.求此时的值及定值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是正方形ABCD对角线AC上一点,点EBC上,且PE=PB

1)求证:PE=PD

2)连接DE,试判断∠PED的度数,并证明你的结论.

查看答案和解析>>

同步练习册答案