【题目】已知一次函数和反比例函数.
(1)如图1,若,且函数、的图象都经过点.
①求,的值;
②直接写出当时的范围;
(2)如图2,过点作轴的平行线与函数的图象相交于点,与反比例函数的图象相交于点.
①若,直线与函数的图象相交点.当点、、中的一点到另外两点的距离相等时,求的值;
②过点作轴的平行线与函数的图象相交于点.当的值取不大于1的任意实数时,点、间的距离与点、间的距离之和始终是一个定值.求此时的值及定值.
【答案】(1)①,;②;(2)①或4;②,.
【解析】
(1)①将点的坐标代入一次函数表达式即可求解,将点的坐标代入反比例函数表达式,即可求解;②由图象可以直接看出;
(2)①,,,由或或得:或0或2,即可求解;②点的坐标为,,即可求解.
(1)①将点的坐标代入一次函数表达式并解得:,
将点的坐标代入反比例函数得:;
②由图象可以看出时,;
(2)①当时,点、、的坐标分别为、、,
则,,,
则或或,
即:或或,
即:或0或2或4,
当时,与题意不符,
点不能在的下方,即也不存在,,故不成立,
故或4;
②点的横坐标为:,
当点在点左侧时,
,
的值取不大于1的任意数时,始终是一个定值,
当时,此时,从而.
当点在点右侧时,
同理,
当,时,(不合题意舍去)
故,.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象与轴交于点.
(1)求该二次函数的解析式,并在下图中画出示意图;
(2)将该二次函数的图象向上平移几个单位长度,可使平移后所得图象经过坐标原点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克元,经试销发现,销售量(千克)与销售单价(元)符合一次函数关系,如图是与的函数关系图象.
求与的函数解析式(也称关系式);
设该水果销售店试销草莓获得的利润为元,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】足球赛是同学们比较喜欢的体育比赛.你知道吗,一个足球被从地面向上踢出,它距地面的高度可以用二次函数刻画,其中表示足球被踢出后经过的时间.
(1)方程的根的实际意义是________.
(2)问经过多长时间,足球到达它的最高点?最高点的高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我市“青山绿水”行动中,某社区计划对面积为的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为区域的绿化时,甲队比乙队少用6天.
(1)求甲、乙两工程队每天各能完成多少面积的绿化;
(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),与MN的另一个交点R,连结AC,DE.
(1)当∠APB=28°时,求∠B的度数和弧CM的度数.
(2)求证:AC=AB.
(3)若MP=4,点P为射线MN上的一个动点,
①求MR的值
②在点P的运动过程中,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求此时所有满足条件的MQ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某球室有三种品牌的个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知(一次拿到元球).
(1)求这个球价格的众数;
(2)若甲组已拿走一个元球训练,乙组准备从剩余个球中随机拿一个训练.
①所剩的个球价格的中位数与原来个球价格的中位数是否相同?并简要说明理由;
②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.
又拿 先拿 | |||
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com