精英家教网 > 初中数学 > 题目详情

【题目】如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图.MN为衣架的墙体固定端,A为固定支点,B为滑动支点,四边形DFGI和四边形EIJH是菱形,且AF=BF=CH=DF=EH.点BAN上滑动时,衣架外延钢体发生角度形变,其外延长度(点A和点C间的距离)也随之变化,形成衣架伸缩效果.伸缩衣架为初始状态时,衣架外延长度为42cm.当点B向点A移动8cm时,外延长度为90cm.如图3,当外延长度为120cm时,则BDGE的间距PQ长为______________cm

【答案】24

【解析】

三节段式伸缩晾衣架,相当于三个菱形构成,前半个和后半个组成一个整体,中间共有两个.本题需用到菱形的性质和勾股定理,根据横向对角线的长度等先计算出菱形的边长,然后根据菱形的面积公式容易求出结果.

如图,作FKABK,设AB=2xcm,由题意,FK=7cm,当AB=2x-8cm时,FK=15cm

则有AF2=x2+72=x-42+152

x=24cm),

AF==25cm),

如图,当OF=20时,在RtDFO中,OD==15cm),

PQGI

FIDG=DFPQ

PQ==24cm).

故答案为24

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

已知实数mn满足(2m2n21)(2m2n21)80,试求2m2n2的值.

解:设2m2n2t,则原方程变为(t1)(t1)80,整理得t2180t281

所以t=土9,因为2m2n20,所以2m2n29.

上面这种方法称为换元法,把其中某些部分看成一个整休,并用新字母代替(即换元),则能使复杂的问题简单化.

根据以上阅读材料内容,解决下列问题,并写出解答过程.

1)已知实数xy,满足(2x22y23)(2x22y23)27,求x2y2的值.

2)已知RtACB的三边为abcc为斜边),其中ab满足(a2b2)(a2b24)5,求RtACB外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线x轴,y轴分别交于点A,点B,抛物线经过AB与点.

1)求抛物线的解析式;

2)点P是直线AB上方的抛物线上一动点(不与点AB重合),过点Px轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.

①求的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?

②若点E是垂线段PD的三等分点,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,是由一个等边ABE和一个矩形BCDE拼成的一个图形,其点BCD的坐标分别为(1,2),(1,1),(3,1).

(1)直接写出E点和A点的坐标;

(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为31;

(3)直接写出图形A1B1C1D1E1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形ABCD中,AD=CD,对角线ACBD相交于点O,且BD平分∠ABC,过点A,垂足为H.

(1)求证:

(2)判断线段BHDHBC之间的数量关系;并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:

原进价(元/张)

零售价(元/张)

成套售价(元/套)

餐桌

a

270

500

餐椅

a110

70

已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.

1)求表中a的值;

2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?

3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象交x轴于A(-1, 0)B(4, 0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点MMNx轴交直线BC于点N,交抛物线于点D,连接AC.设运动的时间为t秒.

(1)求二次函数的表达式;

(2)连接BD,当时,求△DNB的面积;

(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,直接写出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2

(1)求y与x之间的函数关系式;

(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。

(1)求证:方程恒有两个不相等的实数根;

(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。

查看答案和解析>>

同步练习册答案