【题目】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,
∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
【答案】(1)证明过程见解析;(2)AD=2+
【解析】
试题分析:(1)根据AD⊥BC,∠BAD=45°,得出AD=BD,∠ADC=∠FDB=90°,根据AD⊥BC,BE⊥AC得出∠CAD=∠CBE,从而得出△ADC和△BDF全等,得出AC=BF,根据AB=BC,BE⊥AC,得出AE=EC,可得BF=2AE;
(2)根据△ADC和△BDF全等得出DF=CD=,根据Rt△CDF的勾股定理得出CF=2,得出AF=FC=2,根据AD=AF+DF求出长度.
试题解析:(1)∵ AD⊥BC,∠BAD=45°,∴ ∠ABD=∠BAD=45°.∴ AD=BD.
∵ AD⊥BC,BE⊥AC, ∴ ∠CAD+∠ACD=90°,∠CBE+∠ACD=90o ∴ ∠CAD=∠CBE.
又∵ ∠CDA=∠FDB=90°, ∴ △ADC≌△BDF. ∴ AC=BF.
∵ AB=BC,BE⊥AC, ∴ AE=EC,即AC=2AE.∴ BF=2AE.
(2)∵ △ADC≌△BDF,∴ DF=CD=.
∴ 在Rt△CDF中,CF==2.
∵ BE⊥AC,AE=EC,∴ AF=FC=2.
∴ AD=AF+DF=2+.
科目:初中数学 来源: 题型:
【题目】如图①,在矩形 ABCD中,AB=10cm,BC=8cm.点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿 D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.
(1)、参照图象,求b、图②中c及d的值;
(2)、连接PQ,当PQ平分矩形ABCD的面积时,运动时间x的值为 ;
(3)、当两点改变速度后,设点P、Q在运动线路上相距的路程为y(cm),求y(cm)与运动时间x(秒)之间的函数关系式,并写出自变量x的取值范围;
(4)、若点P、点Q在运动路线上相距的路程为25cm,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com