【题目】如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.
(1)求A、B、C三点坐标;
(2)求△ABC的面积.
【答案】(1) A(2,5),B(﹣0.5,0),C(7,0); (2).
【解析】
(1)联立两直线解析式,解方程即可得到点A的坐标,两直线的解析式令y=0,求出x的值,即可得到点A、B的坐标;
(2)根据三点的坐标求出BC的长度以及点A到BC的距离,然后根据三角形的面积公式计算即可求解.
解:(1)直线l1:y=2x+1、直线l2:y=﹣x+7联立得,,
解得,
∴交点为A(2,5),
令y=0,则2x+1=0,﹣x+7=0,
解得x=﹣0.5,x=7,
∴点B、C的坐标分别是:B(﹣0.5,0),C(7,0);
(2)BC=7﹣(﹣0.5)=7.5,
∴S△ABC=×7.5×5=.
故答案为:(1) A(2,5),B(﹣0.5,0),C(7,0); (2).
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,△ABD沿AD方向平移得△A1B1D1 , 点A1在AD边上,A1B1与BD交于点E,D1B1与CD交于点F.
(1)求证:四边形EB1FD是平行四边形;
(2)若AB=3,BC=4,AA1=1,求B1F的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:,OB、OC、OM、ON是内的射线.
如图1,若OM平分,ON平分当OB绕点O在内旋转时,则的大小为______;
如图2,若,OM平分,ON平分当绕点O在内旋转时,求的大小;
在的条件下,若,当在内绕着点O以秒的速度逆时针旋转t秒时,和中的一个角的度数恰好是另一个角的度数的两倍,求t的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.
(1)求证: = ;
(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;
(3)若MA=6 ,sin∠AMF= ,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:
(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;
(2)求出点P在CD上运动时S与t之间的函数表达式;
(3)当t为何值时,三角形APD的面积为10 cm2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y= 交于E,F两点,若AB=2EF,则k的值是( )
A.﹣1
B.1
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工作效率相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( )
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△BAC中,∠B和∠C的平分线相交于点F,过点F作DE∥BC交AB于点D,交AC于点E,若BD=5,CE=4,则线段DE的长为( )
A. 9 B. 6 C. 5 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com