【题目】如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是___.
【答案】7
【解析】
根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.
∵矩形ABCD中,G是CD的中点,AB=8,
∴CG=DG=×8=4,
在△DEG和△CFG中,
,
∴△DEG≌△CFG(ASA),
∴DE=CF,EG=FG,
设DE=x,
则BF=BC+CF=AD+CF=4+x+x=4+2x,
在Rt△DEG中,EG=,
∴EF=,
∵FH垂直平分BE,
∴BF=EF,
∴4+2x=,
解得x=3,
∴AD=AE+DE=4+3=7,
∴BC=AD=7.
故答案为:7.
科目:初中数学 来源: 题型:
【题目】某班共50名同学,统一参加区教育局举办的防“雾霾”知识检验,成绩分别记作60分、70分、80分、90分、100分,现统计出80分、90分、100分的人数,制成不完整的扇形统计图.
(1)若n=108,则60分的人数为 ;
(2)若从这50份试卷中,随机抽取一份,求抽到试卷的分数低于80分的概率;
(3)若成绩的唯一众数为80分,求这个班平均成绩的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,高BD、CE相交于点O,连接AO并延长交BC于点F,则图中全等的直角三角形共有( )
A. 4对B. 5对C. 6对D. 7对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB∥CD,试解决下列问题:
(1)图(1)中,∠1+∠2+∠3= ;
(2)图(2)中,∠1+∠2+∠3+∠4= ;
(3)图(3)中,∠1+∠2+∠3+…+∠n= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.
(1)求证:EF=AE﹣BE;
(2)联结BF,如课=.求证:EF=EP.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点An,则点A2019的坐标是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)请你添加一个适当的条件 ,使得四边形ABCD是平行四边形,并证明你的结论;
(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
①请画出△ABC关于y轴对称的△A1B1C1;
②请画出△ABC关于x轴对称的△A2B2C2,并写出△A2B2C2各顶点坐标;
③求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com