精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,ABAC,高BDCE相交于点O,连接AO并延长交BC于点F,则图中全等的直角三角形共有(  )

A. 4B. 5C. 6D. 7

【答案】C

【解析】

BDC≌△CEB,根据等边对等角得:∠ABC=∠ACB,由高得:∠BDC=∠CEB90°,所以利用AAS可证明全等;

BEO≌△CDO,加上对顶角相等,利用AAS可证明全等;

AEO≌△ADO,根据HL可证明全等;

ABF≌△ACF,根据SAS可证明全等;

BOF≌△COF,根据等腰三角形三线合一的性质得:BFFC,∠AFB=∠AFC,利用SAS可证明全等;

AOB≌△AOC,根据SAS可证明全等;

ABD≌△ACE,利用AAS可证明全等.

解:有7对全等三角形:

BDC≌△CEB,理由是:

ABAC

∴∠ABC=∠ACB

BDCE是两腰上的高,

∴∠BDC=∠CEB90°,

在△BDC和△CEB中,

∴△BDC≌△CEBAAS),

BEDC

BEO≌△CDO,理由是:

在△BEO和△CDO中,

∴△BEO≌△CDOAAS),

AEO≌△ADO,理由是:

由△BEO≌△CDO得:EODO

RtAEORtADO中,

RtAEORtADOHL),

∴∠EAO=∠DAO

ABF≌△ACF,理由是:

在△ABF和△ACF中,

∴△ABF≌△ACFSAS),

BOF≌△COF,理由是:

ABAC,∠BAF=∠CAF

BFFC,∠AFB=∠AFC

在△BOF和△COF中,

∴△BOF≌△COFSAS),

AOB≌△AOC,理由是:

在△AOB和△AOC中,

∴△AOB≌△AOCSAS),

ABD≌△ACE,理由是:

在△ABD和△ACE中,

∴△ABD≌△ACEAAS).

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图(1),已知:在△ABC,BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,证明:ABD≌△ACEDE=BD+CE

(2)如图(2),(1)中的条件改为:在△ABC中,AB=ACD, A, E三点都在直线m上,并且有∠BDA=AEC=BAC=a,其中a为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.

(1)开通隧道前,汽车从A地到B地大约要走多少千米?

(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们不妨约定:对角线互相垂直的凸四边形叫做十字形”.

(1)①在平行四边形,矩形,菱形,正方形中,一定是十字形的有   

②在凸四边形ABCD中,AB=ADCB≠CD,则该四边形   十字形.(填不是”)

(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,ACBD交于点E,ADB﹣CDB=ABD﹣CBD,当6≤AC2+BD2≤7时,求OE的取值范围;

(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记十字形”ABCD的面积为S,记AOB,COD,AOD,BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;

= = 十字形”ABCD的周长为12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,表示立方米)

价目表

每月用水量

价格

不超过的部分

超出不超出的部分

超出的部分

某户居民1月份和2月份的用水量分别为,则应收水费分别是 元和

若该户居民月份用水量(其中),则应收水费多少元? (用含的式子表示,并化简)

若该户居民两个月共用水 (月份用水量超过月份),设月份用水,求该户居民两个月共交水费多少元? (用含 的式子表示,并化简)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AC上取点B,在其同一侧作两个等边三角形ABD BCE ,连接AECDGF,下列结论正确的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别是等边三角形ABC的边BCAC上的点,连接ADBE交于点O,且ABD≌△BCE

1)若AB=3AE=2,则BD=

2)若∠CBE=15°,则∠AOE=

3)若∠BAD=a,猜想∠AOE的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,点EAD上的一点,有AE=4BE的垂直平分线交BC的延长线于点F,连结EFCD于点G.GCD的中点,则BC的长是___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.

①如图1,若∠BCA=90°,∠α=90°,则BE CF;

②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;

(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想: .

查看答案和解析>>

同步练习册答案