【题目】如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.
(1)证明DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
【答案】
(1)证明:连结CE.
∵点E为Rt△ACB的斜边AB的中点,
∴CE= AB=AE.
∵△ACD是等边三角形,
∴AD=CD.
在△ADE与△CDE中, ,
∴△ADE≌△CDE(SSS),
∴∠ADE=∠CDE=30°.
∵∠DCB=150°,
∴∠EDC+∠DCB=180°.
∴DE∥CB
(2)解:当AC= 或AB=2AC时,四边形DCBE是平行四边形,
理由:∵AC= ,∠ACB=90°,
∴∠B=30°,
∵∠DCB=150°,
∴∠DCB+∠B=180°,
∴DC∥BE,又∵DE∥BC,
∴四边形DCBE是平行四边形.
【解析】(1)首先连接CE,根据直角三角形的性质可得CE= AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB;(2)当AC= 或AB=2AC时,四边形DCBE是平行四边形.根据(1)中所求得出DC∥BE,进而得到四边形DCBE是平行四边形.
科目:初中数学 来源: 题型:
【题目】如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O 于点E.
(1) 求证:AC平分∠DAB;
(2) 连接CE,若CE=6,AC=8,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( )
①对角线互相平分且垂直的四边形是菱形;
②一组对边平行,一组对边相等的四边形是平行四边形;
③有一个角是直角的四边形是矩形;
④对角线相等且垂直的四边形是正方形
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点E在AB上,以AE为直径的⊙O与BC相切于点D,连接AD.
(1)求证:AD平分∠BAC;
(2)若⊙O的直径为10,sin∠DAC=,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F.
(1)如图1,当点P为AB的中点时,连接AF,BE.求证:四边形AEBF是平行四边形;
(2)如图2,当点P不是AB的中点,取AB的中点Q,连接EQ,FQ.试判断△QEF的形状,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:
(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;
(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A.如图1,展开后测得∠1=∠2
B.如图2,展开后测得∠1=∠2且∠3=∠4
C.如图3,测得∠1=∠2
D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com