精英家教网 > 初中数学 > 题目详情

【题目】如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点DAD交⊙O 于点E

(1) 求证:AC平分∠DAB;

(2) 连接CE,若CE=6,AC=8,求AE的长.

【答案】(1)证明见解析;(2)2.8.

【解析】试题分析:(1)连接OC,利用条件可证得AD∥OC,再根据平行线的性质和角之间的关系可得∠DAC=∠CAO,即可得证;

(2)连接BC、OE,根据圆周角定理和勾股定理可求AB的长,然后根据相似三角形的判定和性质可得到AD=4.8,DE=3.6,由此可解.

试题解析:(1)证明:连接OC,则OC⊥CD,又AD⊥CD,∴∠ADC=∠OCD=90°,

∴AD∥OC,∴∠CAD=∠OCA,

又OA=OC,∴∠OCA=∠OAC,

∴∠CAD=∠CAO,∴AC平分∠DAB.

(2)解:连接BC、OE,

∵∠EOA=2∠CAD,∠COB=2∠CAO

∵∠CAD=∠CAO,∴∠EOA=∠COB

∴BC=EC=6

∵AB是⊙O的直径,∴∠ACB=90°,

又AC=8,勾股定理易得AB=10,

∵∠DAC=∠CAB,∠ADC=∠ACB=90°,

∴△ADC∽△ACB,,

AD==6.4

又∠DEC=∠ABC,同理可得DE=3.6,

∴AE=AD-DE=6.4-3.6=2.8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABO中,ABOBOBAB1,把ABO绕点O旋转150°后得到A1B1O,则点A1的坐标为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.
(1)求证:△AOE≌△COF;
(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图1所示;种植花卉的利润与投资量成二次函数关系,如图2所示注:利润与投资量的单位:万元

(1)分别求出利润关于投资量的函数关系式;

(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:

(1)这次调查的学生共有多少名?

(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.

(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a:b=3:2,且3a2b4,则ab____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等边△ABC中,点D是BC边的中点,点P为AB 边上的一个动点,设AP= ,PD= ,若之间的函数关系的图象如图2所示,则等边△ABC的面积为( )

A. 4 B. C. 12 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.
(1)证明DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.

查看答案和解析>>

同步练习册答案