【题目】如图,在平行四边形中,、相交于点,点是的中点,连接并延长交于点,,则下列结论:①;②;③;④,其中一定正确的是( ).
A.①②③④B.①②C.②③④D.①②③
【答案】D
【解析】
①根据平行四边形的性质可得出CE=3AE,由AF∥BC可得出△AEF∽△CEB,根据相似三角形的性质可得出BC=3AF,进而可得出DF=2AF,结论①正确;
②根据相似三角形的性质结合S△AEF=4,即可求出S△BCE=9S△AEF=36,结论②正确;
③由△ABE和△CBE等高且BE=3AE,即可得出S△BCE=3S△ABE,进而可得出S△ABE=12,结论③正确;
④假设△AEF∽△ACD,根据相似三角形的性质可得出∠AEF=∠ACD,进而可得出BF∥CD,根据平行四边形的性质可得出AB∥CD,由AB、BF不共线可得出假设不成立,即AEF和△ACD不相似,结论④错误.综上即可得出结论.
①∵四边形为平行四边形,
∴,,.
∵点是的中点,
∴.
∵,
∴,
∴,
∴,
∴,结论①正确;
②∵,,
∴,
∴,结论②正确;
③∵和等高,且,
∴,
∴,结论③正确;
④假设,则,
∴,即.
∵,
∴和共线.
∵点为的中点,即与不共线,
∴假设不成立,即和不相似,结论④错误.
综上所述:正确的结论有①②③.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.
(1)求∠FDE的度数;
(2)试判断四边形FACD的形状,并证明你的结论;
(3)当G为线段DC的中点时,
①求证:FD=FI;
②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90,AB=10,AC=6,点E、F分别是边AC、BC上的动点,过点E作ED⊥AB于点D,过点F作FG⊥AB于点G,DG的长始终为2.
(1)当AD=3时,求DE的长;
(2)当点E、F在边AC、BC上移动时,设,求y关于x的函数解析式,并写出函数的定义域;
(3) 在点E、F移动过程中,△AED与△CEF能否相似,若能,求AD的长;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称轴是直线x=1.
(1)求抛物线的解析式及点C的坐标;
(2)连接BC,E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上,求点F的坐标;
(3)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.
①若△AOC与△BMN相似,请直接写出t的值;
②△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.
(1)求证:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴的交点为A,B(点A 在点B的左侧).
(1)求点A,B的坐标;
(2)横、纵坐标都是整数的点叫整点.
①直接写出线段AB上整点的个数;
②将抛物线沿翻折,得到新抛物线,直接写出新抛物线在轴上方的部分与线段所围成的区域内(包括边界)整点的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )
A. 100cm2B. 150cm2C. 170cm2D. 200cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD的对角线AC,BD相交于点O,E是以A为圆心,以2为半径的圆上一 动点,连结CE,点P为CE的中点,连结BP,若AC=,BD=,则BP的最大值为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com