【题目】某服装店以每件40元的价格购进一批衬衫,在试销过程中统计发现,每月的销售量y(件)与销售单价x(其中x为正整数,且50≤x≤75)(元)之间有下表关系:
销售单价x(元) | 50 | 55 | 60 | 65 | 70 | 75 |
每月销售量y(件) | 160 | 140 | 120 | 100 | 80 | 60 |
(1)若y与x之间的函数关系是下列函数关系之一,则y是x的______
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
(2)求y与x的函数关系式;
(3)如果不考虑其它费用,该店销售这种衬衫的月利润为1600元,这种衬衫的销售单价应定为多少元?
(4)如果每销售一件衬衫需要支出各种费用2元,设服装店每月销售这种衬衫获利为w元,销售单价为多少元时,服装店获利w最大,最大利润是多少?
【答案】(1)B;(2)y=﹣4x+360;(3)这种衬衫的销售单价应定为50元;(4)x=66时,W最大=2304元.
【解析】
(1)由统计表的数据可以直接得出y是x的一次函数;
(2)设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;
(3)由月利润=每件利润×数量建立方程求出其解即可.
(4)由纯利润=销售利润-各种费用支出就可以得出结论.
(1)由统计表的数据变化规律就可以得出y是x的一次函数.
故答案为:B一次函数;
(2)设y与x的函数关系式为y=kx+b,由题意,得
解得:
∴y与x的函数关系式为y=﹣4x+360;
(3)由题意,得
(﹣4x+360)(x﹣40)=1600,
解得:x1=50,x2=80.
∵50≤x≤75,
∴x=50.
答:这种衬衫的销售单价应定为50元;
(4)由题意,得
W=(﹣4x+360)(x﹣40﹣2),
W=﹣4x2+528x﹣15120,
W=﹣4(x﹣66)2+2304.
∵a=﹣4<0,
∴x=66时,W最大=2304元.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数(k≠0,x>0)的图象上,点D的坐标为(﹣4,1),则k的值为( )
A.B.C.4D.﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.
1)求证:AE是⊙O的切线;
(2)已知AE=8cm,CD=12cm,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为_____.(答案用根号表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△PAD的面积为( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)问题提出:如图1,若AD=AE,AB=AC.
①∠ABD与∠ACE的数量关系为 ;②∠BPC的度数为 .
(2)猜想论证:如图2,若∠ADE=∠ABC=30°,则(1)中的结论是否成立?请说明理由.
(3)拓展延伸:在(1)的条件中,若AB=2,AD=1,若把△ADE绕点A旋转,当∠EAC=90°时,直接写出PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.
(1)用画树状图或列表等方法列出所有可能出现的结果;
(2)求点A落在第四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下.
(1)补全下表,在所给坐标系中画出函数的图象:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | 0 | ﹣1 | 0 | … |
(2)观察图象,写出该函数两条不同类型的性质;
(3)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所以对应方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=2有 个实数根;
③关于x的方程x2﹣2|x|=a有4个实数根,a的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com