精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A100),点B06),点PBC边上的动点,将OBP沿OP折叠得到OPD,连接CDAD.则下列结论中:①当∠BOP45°时,四边形OBPD为正方形;②当∠BOP30°时,OAD的面积为15;③当P在运动过程中,CD的最小值为26;④当ODAD时,BP2.其中结论正确的有(  )

A.1B.2C.3D.4

【答案】D

【解析】

由矩形的性质得到,根据折叠的性质得到,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故正确;

,得到,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故正确;

连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故正确;

根据已知条件推出三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故正确.

解:四边形是矩形,

沿折叠得到

四边形是矩形,

四边形为正方形;故正确;

,点

的面积为,故正确;

连接

即当时,取最小值,

的最小值为;故正确;

三点共线,

,故正确;

故选:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,于轴交于点,连接,已知

1)求抛物线的解析式;

2)点是线段上一动点,过点P轴,交抛物线于点D,求的长的最大值;

3)若点E轴上一点,以为顶点的三角形是腰三角形,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,是∠BAC的平分线,经过两点的圆的圆心恰好落在上,分别与相交于点.

(1)判断直线的位置关系并证明;

(2)若的半径为2,,求的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC⊙O的直径,BC⊙O的弦,点P⊙O外一点,连接PAPBAB,已知∠PBA=∠C

1)求证:PB⊙O的切线;

2)连接OP,若OP∥BC,且OP=8⊙O的半径为,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,管中放置着三根同样的绳子AA1BB1CC1

1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?

2)小明先从左端ABC三个绳头中随机选两个打一个结,再从右端A1B1C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径长为1ABAC是⊙O的两条弦,且ABACBO的延长线交AC于点D,连接OAOC

1)求证:OAD∽△ABD

2)当OCD是直角三角形时,求BC两点的距离;

3)记AOBAODCOD的面积分别为S1S2S3,如果S22S1S3,试证明点D为线段AC的黄金分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN是以AB为直径的O上的点,且,弦MNAB于点CBM平分ABDMFBD于点F

1)求证:MFO的切线;

2)若CN3BN4,求CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在锐角中, ,将绕点按逆时针方向旋转,得到.(1)如图1,当点在线段的延长线上时,则的度数为______________度;(2)如图2,点为线段中点,点是线段上的动点,在绕点按逆时针方向旋转过程中,点的对应点是点,则线段长度最小值是_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】净扬水净化有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的小型水净化产品,已于当年投入生产并进行销售.已知生产这种小型水净化产品的成本为4/件,在销售过程中发现:每年的年销售量(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种水净化产品的年利润为z(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)

1)请求出y(万件)与x(元/件)之间的函数关系式;

2)求出第一年这种水净化产品的年利润z(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值;

3)假设公司的这种水净化产品第一年恰好按年利润z(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种水净化产品每件的销售价格x(元)定在8元以上(),当第二年的年利润不低于103万元时,请结合年利润z(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.

查看答案和解析>>

同步练习册答案