分析 根据角平分线上的点到两边的距离相等可得:FG=FA;则只要在确定FA与AE的关系即可确定AE与FG之间的关系;在直角三角形AFC中∠AFC+∠ACF=90°,在直角三角形CDE中,∠DEC+∠ECD=90°,根据角平分线的性质可知:∠ACF=∠DCE,则∠AFC=∠DEC,又知∠AEF=∠DEC,则∠AFC=∠AEF,所以AE=FA,则AE=FG.
解答 证明:∵CF平分∠ACB,FA⊥AC,FG⊥BC
∴FG=FA
∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD
∴∠AFC=∠DEC
∵∠AEF=∠DEC
∴∠AFC=∠AEF
∴AE=FA
∴AE=FG.
点评 本题主要考查了等腰三角形的判定和性质,角平分线的性质;解题时利用了AF这个中间量进行了等量代换是解答本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 15cm、10cm、7cm | B. | 4cm、5cm、10cm | C. | 3cm、8cm、5cm | D. | 3cm、3cm、6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 50° | B. | 75° | C. | 65° | D. | 55° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com