精英家教网 > 初中数学 > 题目详情
15.点P(-2,b)是反比例函数y=$\frac{2}{x}$的图象上的一点,则b=(  )
A.-2B.-1C.1D.2

分析 直接将点P(-2,b)代入y=$\frac{2}{x}$即可求出b的值.

解答 解:∵点P(-2,b)是反比例函数y=$\frac{2}{x}$的图象上的一点,
∴-2b=2,
解得:b=-1,
故选B.

点评 题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.计算:$\sqrt{3}×\sqrt{6}$的结果是(  )
A.$9\sqrt{2}$B.$3\sqrt{2}$C.$2\sqrt{3}$D.$3\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.从2,-2,1,-1四个数中任取2个不同的数求和,其和为1的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)3$\sqrt{3}$-$\sqrt{8}+\sqrt{2}-\sqrt{27}$
(2)($\sqrt{0.5}-2\sqrt{\frac{1}{3}}$)-($\sqrt{\frac{1}{8}}$-$\sqrt{75}$)
(3)($\frac{1}{\sqrt{6}}$)-2+$\sqrt{20}$$÷\sqrt{5}$
(4)$\sqrt{14}$$÷\sqrt{6}$×$\sqrt{\frac{27}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
原料
维生素C及价格
甲种原料乙种原料
维生素C(单位/千克)600400
原料价格(元/千克)95
现要配制这种营养食品20千克,要求每千克至少含有9600单位的维生素C.设购买甲种原料x千克.
(1)至少需要购买甲种原料多少千克?
(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?最少费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知点P(1,2)在反比例函数y=$\frac{k}{x}$的图象上,过P作x轴的垂线,垂足为M,则△OPM的面积为(  )
A.2B.4C.8D.1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,正方形ABCD的四个顶点分别在⊙O上,点P在$\widehat{CD}$上不同于点C的任意一点,则∠BPC的度数是45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:$\frac{{{a^2}-{b^2}}}{{{a^2}-ab}}÷({a+\frac{{2ab+{b^2}}}{a}})$,其中a=2sin45°-$\sqrt{3}$tan30°,b=tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为(  )
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

同步练习册答案