已知,如图,点D在边BC上,点E在△ABC外部,DE交AC于F,若AD=AB,∠1=∠2=∠3.求证:BC=DE.
证明见解析.
【解析】
试题分析:证明线段相等的方法一般是三角形的全等,要想证明BC=DE,找到包含这两条线段的三角形△ABC和△ADE,然后找全等的条件,∵∠1=∠2=∠3,∴∠2+∠DAC=∠1+∠DAC,∴∠BAC=∠DAE,又∵∠DFC=∠AFE,∠3=∠1,∴在△ADE和△ABC中,由三角形的内角和定理得∠3+∠C+∠DFC=∠1+∠E+∠AFE,∵∠DFC=∠AFE,∴∠C=∠E,∵在△ABC和△ADE中,∠BAC=∠DAE,∠C=∠E,AD=AB,∴△ABC≌△ADE(AAS),∴BC=DE.
试题解析:∵∠1=∠2=∠3,
∴∠2+∠DAC=∠1+∠DAC,
∴∠BAC=∠DAE,
又∵∠DFC=∠AFE,∠3=∠1,
∴在△ADE和△ABC中,由三角形的内角和定理得∠3+∠C+∠DFC=∠1+∠E+∠AFE,
∵∠DFC=∠AFE,
∴∠C=∠E,
∵在△ABC和△ADE中,
∠BAC=∠DAE,∠C=∠E,AD=AB,
∴△ABC≌△ADE(AAS),
∴BC=DE.
考点:三角形的全等.
科目:初中数学 来源:2011-2012学年北京石景山中考二模数学试卷(解析版) 题型:解答题
已知,如图,点D在边BC上,点E在△外部,DE交AC于F,若AD=AB,∠1=∠2=∠3.求证:BC=DE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com