【题目】如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
(1)直接写出AB所在直线的解析式、点C的坐标、a的值;
(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.
【答案】(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),
【解析】
(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;
(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;
(3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.
(1)设直线AB解析式为y=kx+b,
把A(﹣4,0),B(0,﹣2)代入得:,
解得:,
∴直线AB的解析式为y=﹣x﹣2,
根据题意得:点C的坐标为(2,2),
把C(2,2)代入二次函数解析式得:a=;
(2)连接BQ,
则易得PQ∥OB,且PQ=OB,
∴四边形PQBO是平行四边形,
∴OP=BQ,
∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),
∵直线AB的解析式为y=﹣x﹣2,
∴可设此时点Q的坐标为(t,﹣t﹣2),
于是,此时点P的坐标为(t,﹣t),
∵点P在抛物线y=x2上,
∴﹣t=t2,
解得:t=0或t=﹣1,
∴当t=0,点P与点O重合,不合题意,应舍去,
∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);
(3)P(﹣4,8)或(4,8),
如备用图所示,延长PQ交x轴于点H,
设此时点P的坐标为(m,m2),
则tan∠HPO=,
又,易得tan∠OBC=,
当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,
于是,得,
解得:m=±4,
所以P(﹣4,8)或(4,8).
科目:初中数学 来源: 题型:
【题目】如图,AN∥CB,B、N在AC同侧,BM、CN交于点D,AC=BC,且∠A+∠MDN=180°.
(1)如图1,当∠NAC=90°,求证:BM=CN;
(2)如图2,当∠NAC为锐角时,试判断BM与CN关系并证明;
(3)如图3,在(1)的条件下,且∠MBC=30°,一动点E在线段BM上运动过程中,连CE,将线段CE绕点C顺时针旋转90°至CF,取BE中点P,连AP、FP.设四边形APFC面积为S,若AM=﹣1,MC=1,在E点运动过程中,请写出S的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,,D为BC的中点,过点C作于点G,过点B作于点B,交CG的延长线于点F,连接DF交AB于点E.
(1)求证:;
(2)求证:AB垂直平分DF;
(3)连接AF,试判断的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条的粗细(横截面积)的反比例函数,其图象如图所示.
写出与的函数关系式;
求当面条粗总长度为米时,面条的横截面积是多少?
求当要求面条的横截面积不少于时,面条的总长度最多为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.
(1)求证:PC是⊙O的切线.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D为直线BC上一动点(不与点B,C重合),在AD的右侧作△ACE,使得AE=AD,∠DAE=∠BAC,连接CE.
(1)当D在线段上时.
①求证:.
②请判断点D在何处时,,并说明理由.
(2)当时,若中最小角为28°,求的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com