精英家教网 > 初中数学 > 题目详情

如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.

(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;

(2)在图1中,过点A作AMEF于点M,请直接写出AM和AB的数量关系;

(3)如图2,将RtABC沿斜边AC翻折得到RtADC,E,F分别是BC,CD边上的点,EAF=BAD,连接EF,过点A作AMEF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.

 

 

(1)EF=BE+DF见解析 (2)AM=AB见解析 (3)AM=AB见解析

【解析】(1)EF=BE+DF,

证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,

四边形ABCD是正方形,

AD=AB,D=DAB=ABE=ABQ=90°,

ADF和ABQ中

∴△ADF≌△ABQ(SAS),

AQ=AF,QAB=DAF,

∵∠DAB=90°,FAE=45°,

∴∠DAF+BAE=45°,

∴∠BAE+BAQ=45°,

EAQ=FAE,

EAQ和EAF中

∴△EAQ≌△EAF,

EF=EQ=BE+BQ=BE+DF.

(2)【解析】
AM=AB,

理由是:∵△EAQ≌△EAF,

×EQ×AB=×FE×AM,

EF=EQ,

AM=AB.

(3)AM=AB,

证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,

折叠后B和D重合,

AD=AB,D=ABE=90°,BAC=DAC=BAD,

ADF和ABQ中,

∴△ADF≌△ABQ(SAS),

AQ=AF,QAB=DAF,

∵∠FAE=BAD,

∴∠DAF+BAE=BAE+BAQ=EAQ=BAD,

EAQ=FAE,

EAQ和EAF中,

∴△EAQ≌△EAF(SAS),

EF=EQ,

∵△EAQ≌△EAF,EF=EQ,

×EQ×AB=×FE×AM,

AM=AB.

(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,D=DAB=ABE=ABQ=90°,证ADF≌△ABQ,推出AQ=AF,QAB=DAF,求出EAQ=F,证EAQ≌△EAF,推出EF=BQ即可;

(2)根据EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;

(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,D=ABE=90°,BAC=DAC=BAD,证ADF≌△ABQ,推出AQ=AF,QAB=DAF,求出EAQ=FAE,证EAQ≌△EAF,推出EF=EQ即可.

 

练习册系列答案
相关习题

科目:初中数学 来源:2014中考名师推荐数学实数(解析版) 题型:计算题

计算:-12003+()-2-|3-|+3tan60°。

 

查看答案和解析>>

科目:初中数学 来源:2014中考名师推荐数学图形的相似(解析版) 题型:填空题

如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是____________.

 

 

查看答案和解析>>

科目:初中数学 来源:2014中考名师推荐数学图形与坐标(解析版) 题型:填空题

如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是             .

 

 

查看答案和解析>>

科目:初中数学 来源:2014中考名师推荐数学因式分解(解析版) 题型:填空题

利用分解因式计算:

(1)22005﹣22004 =        2)(﹣251+(﹣250=        

 

查看答案和解析>>

科目:初中数学 来源:2014中考名师推荐数学反比例函数(解析版) 题型:选择题

已知点A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数y 的图象上,则y1、y2、y3的大小关系是(  )

Ay3<y1<y2

By1<y2<y3

Cy2<y1<y3

Dy3<y2<y1

 

查看答案和解析>>

科目:初中数学 来源:2014中考名师推荐数学分类讨论思想(解析版) 题型:选择题

CDO的一条弦,作直径AB,使ABCD,垂足为E,若AB=10CD=8,则BE的长是(  )

A8

B2

C28

D37

 

查看答案和解析>>

科目:初中数学 来源:2014中考名师推荐数学二次根式(解析版) 题型:填空题

已知:如果n是大于1的正整数,那么请用含n的式子表示你发现的规律               

 

查看答案和解析>>

科目:初中数学 来源:2014中考名师推荐数学三角形(一)(解析版) 题型:填空题

将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知A=EDF=90°,AB=AC.E=30°,BCE=40°,则CDF=

 

 

查看答案和解析>>

同步练习册答案