【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式.
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.
【答案】(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.
【解析】
试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;
(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;
(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.
试题解析:(1)∵点B是点A关于y轴的对称点,
∴抛物线的对称轴为y轴,
∴抛物线的顶点为(0,),
故抛物线的解析式可设为y=ax2+.
∵A(﹣1,2)在抛物线y=ax2+上,
∴a+=2,
解得a=﹣,
∴抛物线的函数关系表达式为y=﹣x2+;
(2)①当点F在第一象限时,如图1,
令y=0得,﹣x2+=0,
解得:x1=3,x2=﹣3,
∴点C的坐标为(3,0).
设直线AC的解析式为y=mx+n,
则有,
解得,
∴直线AC的解析式为y=﹣x+.
设正方形OEFG的边长为p,则F(p,p).
∵点F(p,p)在直线y=﹣x+上,
∴﹣p+=p,
解得p=1,
∴点F的坐标为(1,1).
②当点F在第二象限时,
同理可得:点F的坐标为(﹣3,3),
此时点F不在线段AC上,故舍去.
综上所述:点F的坐标为(1,1);
(3)过点M作MH⊥DN于H,如图2,
则OD=t,OE=t+1.
∵点E和点C重合时停止运动,∴0≤t≤2.
当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.
当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.
在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.
在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,
∴MN2=12+()2=.
①当DN=DM时,
(﹣t+)2=t2﹣t+2,
解得t=;
②当ND=NM时,
﹣t+=,
解得t=3﹣;
③当MN=MD时,
=t2﹣t+2,
解得t1=1,t2=3.
∵0≤t≤2,∴t=1.
综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.
科目:初中数学 来源: 题型:
【题目】(本题6分)下列是用火柴棒拼出的一列图形.
仔细观察,找出规律,解答下列各题:
(1)第4个图中共有_____ 根火柴,第6个图中共有_____ 根火柴;
(2)第n个图形中共有_____ 根火柴(用含n的式子表示);
(3)请计算第2013个图形中共有多少根火柴?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).
(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出与△A1B1C1关于y轴对称的△A2B2C2;
(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为 ;
(4)试在y轴上找一点Q(在图中标出来),使得点Q到B2、C2两点的距离之和最小,并求出QB2+QC2的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自主服装品牌设计出了一种西装和领带,西装每套定价200元,领带每条定价40元.在推广服装品牌初期开展促销活动,可以同时向客户提供两种优惠方案:
方案①买一套西装送一条领带;
方案②西装和领带都按定价的90%付款.
现某客户要到该服装品牌购买西装20套,领带条(超过20).
(1)若该客户按方案①购买,需付款_ _____元(用含的式子表示);
若该客户按方案②购买,需付款__ ____元(用含的式子表示);
(2)若=30,通过计算说明此时按哪种方案购买较为合算?
(3)当=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算出所需的钱数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪(图中阴影部分).
(1)图①中草坪的面积为__________;
(2)图②中草坪的面积为__________;
(3)图③中草坪的面积为__________;
(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com