【题目】万州区初中数学教研工作坊到重庆某中学开展研讨活动,先后乘坐甲、乙两辆汽车从万州出发前往相距250千米的重庆,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到重庆,如图是甲、乙两车之间的距离s(km),乙车出发时间t(h)之间的函数关系图象,则甲车从万州出发到重庆共花费了_____小时.
科目:初中数学 来源: 题型:
【题目】在中,,为边上一动点(点与点不重合),联结,过点作交边于点.
(1)如图,当时,求的长;
(2)设,求关于的函数解析式并写出函数定义域;
(3)把沿直线翻折得,联结,当是等腰三角形时,直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,是上一点,连接
(1)如图1,若,是延长线上一点,与垂直,求证:
(2)过点作,为垂足,连接并延长交于点.
①如图2,若,求证:
②如图3,若是的中点,直接写出的值(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.
(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.
(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(发现问题)爱好数学的小明在做作业时碰到这样的一道题目:
如图1,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值.
(解决问题)小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.
(1)请你找出图中与OC相等的线段,并说明理由;
(2)请直接写出线段OC的最大值.
(迁移拓展)
(3)如图2,BC=4,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请求出AC的最值,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分别是边BC,边CD上的两点.
(1)若∠ABC=∠ADC,∠BAE=30°,AD=3,求AE的长;
(2)若∠EAF=∠BAD,求证:BE+DF=EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a<0)的对称轴为x=-1,与x轴的一个交点为(2,0).若关于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx-3的图象与x轴交于点A(-1,0)和点B(3,0),顶点为D,点C是直线l:y=x+5与x轴的交点.
(1)求该二次函数的表达式;
(2)点E是直线l在第三象限上的点,连接EA、EB,当△ECA∽△BCE时,求E点的坐标;
(3)在(2)的条件下,连接AD、BD,在直线DE上是否存在点P,使得∠APD=∠ADB?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C、D是半圆AB的三等分点,过点C作AD延长线的垂线CE,垂足为E.
(1)求证:CE是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
(3)若弦CN过△ABC的内心点M,MN=,求CN.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com