精英家教网 > 初中数学 > 题目详情
如图,已知∠AOB=25°,把∠AOB绕顶点O按逆时针旋转55°到∠MON,点C、D分别是OB、OM上的点,分别作C点关于OA、ON的对称点E、F,连接DE、DF.
(1)求∠ECF的度数;
(2)说明DE=DF的理由.
(1)∵C点关于OA、ON的对称点分别为E、F,
∴OA、ON分别是EC、CF的垂直平分线,
∵∠AON=55°+25°=80°,
∴∠OCE=90°-∠COA=65°,∠OCF=90°-∠BON=10°,
∴∠ECF=∠OCE+∠OCF=75°.

(2)连接OE、OF,
由(1)知,OA、ON分别是EC、CF的垂直平分线,
∴OE=OC=OF,
由对称性知:∠E0A=∠AOB=25°∠NOF=∠NOB=55°,
∴∠E0D=∠FOD=80°,
在△OED与△OFD中
OE=OF
∠EOD=∠FOD
OD=OD

∴△OED≌△OFD(SAS),
∴DE=DF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

直角坐标系中,已知点A(-1,2)、点B(5,4),x轴上一点P(x,0)满足PA+PB最短,则x=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是(  )
A.(0,0)B.(0,1)C.(0,2)D.(0,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知矩形ABCD的两边AB与BC的比为4:5,E是AB上的一点,沿CE将△EBC向上翻折,若B点恰好落在边AD上的F点,则tan∠DCF等于(  )
A.
3
4
B.
4
3
C.
3
5
D.
5
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图.在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为(  )
A.(-
4
5
12
5
)
B.(-
2
5
13
5
)
C.(-
1
2
13
5
)
D.(-
3
5
12
5
)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,∠A=36°,请你设计两种不同的方法,将△ABC分割成三部分,使每部分均为等腰三角形,并在每个三角形内部标出相应度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知矩形ABCD,现将矩形沿对角线BD折叠,得到如图所示的图形,
(1)求证:△ABE≌△C′DE;
(2)若AB=6,AD=10,求S△ABE

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在梯形ABCD中,ADBC,AB=DC,E,F分别是AB和BC边上的点.
(1)如图①,以EF为对称轴翻折梯形ABCD,使点B与点D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面积S梯形ABCD的值;
(2)如图②,连接EF并延长与DC的延长线交于点G,如果FG=k•EF(k为正数),试猜想BE与CG有何数量关系写出你的结论并证明之.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,
(1)求证:四边形AFCE为菱形;
(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

查看答案和解析>>

同步练习册答案