【题目】如图,已知,在Rt ΔABC中,∠ABC=900, AB=BC=2.
(1)用尺规作∠A的平分线AD.
(2)角平分线AD交BC于点D,求BD的长.
【答案】(1)见解析(2)2﹣2
【解析】试题分析:(1)利用基本作作(作已知角的平分线)作AD平分∠BAC;
(2)作DE⊥AC于E,如图,先判断△ABC为等腰直角三角形得到∠C=45°,则可判断△CDE为等腰直角三角形,则CD=DE,再根据角平分线的性质得到BD=BE,设BD=x,则CD=x,然后利用BC=2列方程x+x=2,再解方程即可.
解:(1)如图,AD为所求;
(2)作DE⊥AC于E,如图,
∵∠ABC=90°,AB=BC=2.
∴△ABC为等腰直角三角形,
∴∠C=45°,
∴△CDE为等腰直角三角形,
∴CD=DE,
∵AD为角平分线,DB⊥AB,DE⊥AC,
∴BD=BE,
设BD=x,则CD=x,
∴x+x=2,
∴x=2(﹣1)=2﹣2,
即BD的长为2﹣2.
科目:初中数学 来源: 题型:
【题目】一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是( )
A.13cm B.14cm C.13cm或14cm D.以上都不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A.如图1,展开后测得∠1=∠2
B.如图2,展开后测得∠1=∠2且∠3=∠4
C.如图3,测得∠1=∠2
D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列四个命题:①垂直于弦的直径平分弦以及弦所对的两条弧;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④矩形一定有一个外接圆;⑤三角形的外心到三角形三边的距离相等。其中真命题的个数有( )
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com