精英家教网 > 初中数学 > 题目详情
若a>b,且c为实数,则(  )
A、ac>bc
B、ac<bc
C、ac2>bc2
D、ac2≥bc2
考点:不等式的性质
专题:
分析:根据不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.
解答: 解:A、c=0时,ac=bc,故A错误;
B、c=0时,ac=bc,故B错误;
C、c=0时,ac2=bc2,故C错误;
D、c2≥0,ac2≥bc2,故D正确;
故选:D.
点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠A=60°,∠ABC的平分线BE和∠ACB的平分线CF相交于点O.
(1)求∠BOF的度数;
(2)若点D在BC上,且BD=BF,求证:OF=OD=OE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)4x-1.5x=-0.5x-9
(2)x-
2x+1
12
=1-
3x-2
4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段OA1=1,过点A1作A1A2⊥OA1,且A1A2=1,连接OA2,再过点A1作A2A3⊥OA2,且A2A3=1,连接OA3,如此作出线段A1A2=A2A3=…=AnAn+1=1,也得到了n条线段OA1,OA2,OA3,…OAn
猜想与证明:
(1)计算OA2=
 
;计算OA3=
 
;计算OA4=
 

(2)根据以上计算,请猜想OAn的长度(用含n的代数式表示),并证明你的猜想.
探究与证明:
(1)利用上面的结论,可得,当OA1=A1A2=A2A3=…AnAn+1=3时,OAn的长度(用含n的代数式表示)为
 

(2)若OA1=A1A2=A2A3=…=AnAn+1=a时,请猜想OAn的长度(用含a,n的代数式表示),并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a、b、c为三角形ABC的三边长,求证:关于x的方程cx2-(a+b)x+
c
4
=0有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
(1)
a
a2-2a+1
 •
a2-a
a2
;     
(2)
m
m-n
-
n
m+n
+
2mn
m2-n2

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读解答题:
有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.
例:若x=123456789×123456786,
y=123456788×123456787,试比较x、y的大小.
解:设123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a
∵x=y=(a2-a-2)-(a2-a)=-2<0
∴x<y
看完后,你学到了这种方法吗?再亲自试一试吧,你准行!
问题:
(1)x=98760×98765-98761×98764,y=98761×98764-98762×98763,试比较x、y的大小;
(2)计算:1.345×0.345×2.69-1.3453-1.345×0.3452

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)-22+
4
+(3-π)0-|-3|
(2)
552-452
992+198+1

(3)(8a4b3c)÷(-2ab2)2×(-
1
3
bc)

查看答案和解析>>

科目:初中数学 来源: 题型:

若一个正数x的两个平方根是a-1和a+3,则a=
 
;x=
 
;a2014=
 

查看答案和解析>>

同步练习册答案