精英家教网 > 初中数学 > 题目详情

【题目】如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.

(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.

【答案】
(1)

证明:如图1,根据折叠,∠DBC=∠DBE,

又AD∥BC,

∴∠DBC=∠ADB,

∴∠DBE=∠ADB,

∴DF=BF,

∴△BDF是等腰三角形;


(2)

解:①∵四边形ABCD是矩形,

∴AD∥BC,

∴FD∥BG,

又∵FD∥BG,

∴四边形BFDG是平行四边形,

∵DF=BF,

∴四边形BFDG是菱形;

②∵AB=6,AD=8,

∴BD=10.

∴OB= BD=5.

假设DF=BF=x,∴AF=AD﹣DF=8﹣x.

∴在直角△ABF中,AB2+A2=BF2,即62+(8﹣x)2=x2

解得x=

即BF=

∴FO= = =

∴FG=2FO=


【解析】(1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.
【考点精析】根据题目的已知条件,利用平行线的性质和矩形的性质的相关知识可以得到问题的答案,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.

(1)求抛物线C2的解析式.
(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.
(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,∠A=30°,将△ABCC点按逆时针方向旋转α角(0°<α<90°)得到△DEC,设CDABF,连接AD,当旋转角α度数为____________,△ADF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程(组)

13x2x2

22x+3)﹣7x52x1);

3

4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为( )

A.3m
B. m
C. m
D.4m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线 轴、 轴分别相交于点A(-1,0)和B(0,3),其顶点为D.

(1)求这条抛物线的解析式;
(2)若抛物线与 轴的另一个交点为E,求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出点P的坐标,若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.

妈妈:今天买这两样菜共花了45元,上月买同重量的这两样菜只要36

爸爸:报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”

小明:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?

请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).

查看答案和解析>>

同步练习册答案