精英家教网 > 初中数学 > 题目详情

【题目】一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,求两次都摸到白球的概率是多少?

【答案】解:由题意可得, 所有的可能性是:(红,绿)、(红、白),(红,白)、(绿,红)、(绿,白)、(绿,白)、(白,红)、(白,绿)、(白,白)、(白,红)、(白,绿)、(白,白),
∴两次都摸到白球的概率是:
即两次都摸到白球的概率是
【解析】根据题意可以写出所有的可能性,从而可以得到两次都摸到白球的概率.
【考点精析】掌握列表法与树状图法是解答本题的根本,需要知道当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解答题。
(1)计算:
(2)因式分解:(a+2)(a﹣2)+4(a+1)+4.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是(  )

A.12cm
B.6cm
C.3 cm
D.2 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)用配方法解一元二次方程:x2﹣6x+4=0.
(2)已知关于x的一元二次方程x2﹣4x+m=0的根的判别式的值为4,求m值及方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(x1 , y1),B(x2 , y2)是反比例函数y=﹣ 的图像上的两点,若x1<0<x2 , 则下列结论正确的是( )
A.y1<0<y2
B.y2<0<y1
C.y1<y2<0
D.y2<y1<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课外兴趣小组活动时,老师提出了如下问题: 如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,再连接BE,(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

(1)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF. ①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明

(2)问题拓展:如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的边AB为⊙O的直径,BC与⊙O交于点D,D为BC的中点,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若AB=13,BC=10,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O在∠APB的平分线上,⊙O与PA相切于点C.

(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.

查看答案和解析>>

同步练习册答案