【题目】已知:如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.
(1)求证:AD=EC;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.
【答案】(1)、证明过程见解析;(2)、点D是BC的中点,证明过程见解析.
【解析】
试题分析:(1)、根据平移得到AD平行且等于DE,∠B=∠EDC,根据AB=AC得出∠B=∠ACD,AC=DE,结合DC=CD得到△ACD和△ECD全等,得出AD=EC;(2)、首先得出四边形ADCE是平行四边形,结合AD⊥BC得出矩形.
试题解析:(1)、由平移可得AB∥DE,AB=DE; ∴∠B=∠EDC∵ AB=AC ∴∠B=∠ACD, AC=DE
∴∠EDC =∠ACD ∵DC=CD ∴△ACD≌△ECD(SAS) ∴AD=EC
(2)、当点D是BC中点时,四边形ADCE是矩形
理由如下:∵AB=AC,点D是BC中点 ∴BD=DC,AD⊥BC
由平移性质可知 四边形ABDE是平行四边形 ∴AE=BD,AE∥BD ∴AE=DC,AE∥DC
∴四边形ADCE是平行四边形 ∵AD⊥BC ∴四边形ADCE是矩形
科目:初中数学 来源: 题型:
【题目】下列直线是圆的切线的是( )
A.与圆有公共点的直线
B.到圆心的距离等于半径的直线
C.到圆心的距离大于半径的直线
D.到圆心的距离小于半径的直线
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提倡“绿色”出行,顺义区启动了公租自行车项目,为了解我区居民公租自行车的使用情况,某校的社团把使用情况分为A(经常租用)、B(偶尔租用)、C(不使用)三种情况.先后在2015年1月底和3月底做了两次调查,并根据调查结果绘制成了如下两幅不完整的统计图:
根据以上信息解答下列问题:
(1)在扇形统计图中,A(经常租用)所占的百分比是 ;
(2)求两次共抽样调查了多少人;并补全折线统计图;
(3)根据调查的结果,请你谈谈从2015年1月底到2015年3月底,我区居民使用公租自行车的变化情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)若∠1=70°,求∠MKN的度数.
(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.
(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,是一个长为2m、宽为2n的长方形,沿图中虚线剪成四个完全一样的小长方形,然后按图2的形状拼成一个正方形.
(1)图2中阴影部分的面积为 ;
(2)用两种不同的方法计算图2中阴影部分的面积,可以得到的等式是 (只填序号);
①(m+n)2=m2+2mn+n2 ②(m﹣n)2=m2﹣2mn+n2 ③(m﹣n)2=(m+n)2﹣4mn
(3)若x﹣y=﹣4,xy=,则x+y= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com