精英家教网 > 初中数学 > 题目详情

【题目】化简求值
(1)
(2)( ﹣2)2+
(3) +
(4) +(1+ )(1﹣

【答案】
(1)解: =3
(2)解:( ﹣2)2+

=5﹣4 +4+4

=9;


(3)解: +

=3 +2

=


(4)解: +(1+ )(1﹣

= +(1﹣3)

=2+(﹣2)

=0.


【解析】(1)根据二次根式的化简方法可以解答本题;(2)根据完全平方公式和合并同类项可解答本题;(3)先将二次根式化简再合并同类项即可解答本题;(4)先将二次根式化简再合并同类项即可解答本题.
【考点精析】掌握二次根式的混合运算是解答本题的根本,需要知道二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将点A(﹣2,5)先向下平移3个单位,再向右平移2个单位后,则得到点B,则点B的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要调查下列问题,你认为哪些适合抽样调查(
①市场上某种食品的某种添加剂的含量是否符合国家标准
②检测某地区空气质量
③调查全市中学生一天的学习时间.
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边)

(1)求抛物线的解析式及A,B两点的坐标;

(2)若(1)中抛物线的对称轴上有点P,使△ABP的面积等于△ABC的面积的2倍,求出点P的坐标;

(3)在(1)中抛物线的对称轴l上是否存在一点Q,使AQ+CQ的值最小?若存在,求AQ+CQ的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a与1互为相反数,则|a+1|等于(
A.﹣1
B.0
C.1
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+bk≠0)与抛物线y=ax2a≠0)交于AB两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:

抛物线y=ax2a≠0)的图象的顶点一定是原点;

②x0时,直线y=kx+bk≠0)与抛物线y=ax2a≠0)的函数值都随着x的增大而增大;

③AB的长度可以等于5

④△OAB有可能成为等边三角形;

-3x2时,ax2+kxb

其中正确的结论是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天加工零件各多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1:已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°.AM、AN分别交BC于点M,N.
(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到ACQ,请在图1中画出△ACQ;(不写出画法)

(2)在(1)中作图的基础上,连接NQ,
①求证“MN=NQ”;
②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由.
(3)线段GS,ST和TH之间满足的数量关系是
(4)设DK=a,DE=b,求DP的值.(用a,b表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则SDEF:SAOB的值为(

A.1:3
B.1:5
C.1:6
D.1:11

查看答案和解析>>

同步练习册答案