精英家教网 > 初中数学 > 题目详情

【题目】已知⊙O的半径为10cmOP8cm,则点P和⊙O的位置关系是(  )

A.P在圆内B.P在圆上C.P在圆外D.无法判断

【答案】A

【解析】

比较OP与圆的半径的大小,然后根据点与圆的位置关系判断点P和⊙O的位置关系;

解:∵点P到圆心的距离OP8cm,小于⊙O的半径10cm

∴点P在在圆内.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:

(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;

(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢A项目的人数所占的百分比为 , 其所在扇形统计图中对应的圆心角度数是度;
(2)请把条形统计图补充完整;
(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定满足(
A.对角线相等
B.对角线互相平分
C.对角线互相垂直
D.对角线相等且相互平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】-6的相反数等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=(x52+7的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧分别交OA、OB于点M、N.

(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′. 求证:AP = BP′;

(2)点T在左半弧上,若AT与弧相切于点T,求点T到OA的距离;

(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.

查看答案和解析>>

同步练习册答案