精英家教网 > 初中数学 > 题目详情

【题目】若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定满足(
A.对角线相等
B.对角线互相平分
C.对角线互相垂直
D.对角线相等且相互平分

【答案】C
【解析】解:已知:如下图,
四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.
证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,
根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;
∵四边形EFGH是矩形,即EF⊥FG,
∴AC⊥BD,
所以答案是:对角线互相垂直.
【考点精析】根据题目的已知条件,利用矩形的判定方法的相关知识可以得到问题的答案,需要掌握有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C,D为圆心,大于 CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是(
A.射线OE是∠AOB的平分线
B.△COD是等腰三角形
C.O,E两点关于CD所在直线对称
D.C,D两点关于OE所在直线对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】情境观察:
(1)如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F. ①写出图1中所有的全等三角形
②线段AF与线段CE的数量关系是
(2)如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E. 求证:AE=2CD.
(3)如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE. 要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.请你判定四边形BMDN是什么特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则下列判断:

①当AP=BP时,AB′∥CP;

②当AP=BP时,∠B′PC=2∠B′AC

③当CP⊥AB时,AP=

④B′A长度的最小值是1.

其中正确的判断是 (填入正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下面各题
(1)计算:(3﹣ )(3+ )+ (2﹣
(2)解方程: +1=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.(不写解答过程,直接写出结果)

(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为

(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为

(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长为

(4)在x轴上找一点P,使PA+PB的值最小,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知圆柱的侧面积是20π cm2 , 高为5cm,则圆柱的底面半径为

查看答案和解析>>

同步练习册答案