【题目】如图1是一种折叠式可调节的鱼竿支架的示意图,AE是地插,用来将支架固定在地面上,支架AB可绕A点前后转动,用来调节AB与地面的夹角,支架CD可绕AB上定点C前后转动,用来调节CD与AB的夹角,支架CD带有伸缩调节长度的伸缩功能,已知BC=60cm.
(1)若支架AB与地面的夹角∠BAF=35°,支架CD与钓鱼竿DB垂直,钓鱼竿DB与地面AF平行,则支架CD的长度为 cm(精确到0.1cm);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如图2,保持(1)中支架AB与地面的夹角不变,调节支架CD与AB的夹角,使得∠DCB=85°,若要使钓鱼竿DB与地面AF仍然保持平行,则支架CD的长度应该调节为多少?(结果保留根号)
【答案】(1)34.2;(2)支架CD的长度应该调节为22.8cm.
【解析】
(1)直接利用锐角三角函数关系得出DC的长;
(2)首先得出∠DCG=30°,进而得出DC的长.
解:(1)如图1,在Rt△BDC中,BC=60cm.∠DBC=∠BAF=35°,
故DC=BCsin 35°=60×0.57≈34.2(cm);
故答案为:34.2;
(2)如图2,过点C作CG⊥DB,垂足为G,
由(1)可知,CG=34.2cm,
∵BD∥AF,∠BAF=35°,
∴∠DBC=35°,
在Rt△CBG中,
∠BCG=90°-∠DBC=90°-35°=55°,
∵∠DCB=85°,
∴∠DBG=85°-55°=30°,
在Rt△CDG中,
cos30°=,即,
∴CD=22.8(cm)
答:支架CD的长度应该调节为22.8cm.
科目:初中数学 来源: 题型:
【题目】如图(1),AB=7cm,AC⊥AB,BD⊥AB 垂足分别为 A、B,AC=5cm.点P 在线段 AB 上以 2cm/s 的速度由点 A 向点B 运动,同时,点 Q 在射线 BD 上运动.它们运 动的时间为 t(s)(当点 P 运动结束时,点 Q 运动随之结束).
(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等, 并判断此时线段 PC 和线段 PQ 的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB” 改为 “∠CAB=∠DBA=60°”,点 Q 的运动速 度为 x cm/s,其他条件不变,当点 P、Q 运动到某处时,有△ACP 与△BPQ 全等,求出相应的 x、t 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校教育将“立德树人”置于首位,某校在开展以“社会主义核心价值观”为主题的征文活动中,(一)班计划从2份“爱国”和2份“诚信”为主题的征文中随机选取2份进行交流,利用树状图或表格计算,在所选取的2份征文中,“爱国”为主题的征文同时被抽中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠CAB=130°,AB、AC的垂直平分线分别交BC于点M、N,则∠MAN等于( )
A.60°B.70°C.80°D.90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D
(1)求证:∠BCE=∠CAD;
(2)若AD=9cm,DE=5cm,求BE的长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)写出点B1的坐标;
(4)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,直线L过A,B两点,请计算该直线的函数表达式。
(2)试判断:点P(1,-2)在不在直线L上?说说你的理由。
(3)求△AOB的面积
(4)当x取什么值时,y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形纸片OABC放在直角坐标系中,O为原点,C在x的正半轴上,OA=6,OC=10.
(1)写出B的坐标;
(2)在OA上取点E,将△EOC沿EC折叠,使O落在AB边上的D点,求E点坐标;
(3)求直线DE的函数表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com